首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The binding properties of seven CD4-blocking monoclonal antibodies raised against recombinant gp120 of human immunodeficiency virus type 1 strain MN (HIV-1MN) and two CD4-blocking monoclonal antibodies to recombinant envelope glycoproteins gp120 and gp160 of substrain IIIB of HIVLAI were analyzed. With a panel of recombinant gp120s from seven diverse HIV-1 isolates, eight of the nine antibodies were found to be strain specific and one was broadly cross-reactive. Epitope mapping revealed that all nine antibodies bound to epitopes located in the fourth conserved domain (C4) of gp120. Within this region, three distinct epitopes could be identified: two were polymorphic between HIV-1 strains, and one was highly conserved. Studies with synthetic peptides demonstrated that the conserved epitope, recognized by antibody 13H8, was located between residues 431 and 439. Site-directed mutagenesis of gp120 demonstrated that residue 429 and/or 432 was critical for the binding of the seven antibodies to gp120 from HIV-1MN. Similarly, residues 423 and 429 were essential for the binding of monoclonal antibody 5C2 raised against gp120 from HIV-1IIIB. The amino acids located at positions 423 and 429 were found to vary between strains of HIV-1 as well as between molecular clones derived from the MN and LAI isolates of HIV-1. Polymorphism at these positions prevented the binding of virus-neutralizing monoclonal antibodies and raised the possibility that HIV-1 neutralization serotypes may be defined on the basis of C4 domain sequences. Analysis of the binding characteristics of the CD4-blocking antibodies demonstrated that their virus-neutralizing activity was directly proportional to their gp120-binding affinity. These studies account for the strain specificity of antibodies to the C4 domain of gp120 and demonstrate for the first time that antibodies to this region can be as effective as those directed to the principal neutralizing determinant (V3 domain) in neutralizing HIV-1 infectivity.  相似文献   

2.
We have studied the induction of neutralizing antibodies by in vivo expression of the human immunodeficiency virus type 1 (HIV-1) envelope by using a Venezuelan equine encephalitis virus (VEE) replicon system with mice and rabbits. The HIV-1 envelope, clone R2, has broad sensitivity to cross-reactive neutralization and was obtained from a donor with broadly cross-reactive, primary virus-neutralizing antibodies (donor of reference serum, HIV-1-neutralizing serum 2 [HNS2]). It was expressed as gp160, as secreted gp140, and as gp160deltaCT with the cytoplasmic tail deleted. gp140 was expressed in vitro at a high level and was predominantly uncleaved oligomer. gp160deltaCT was released by cells in the form of membrane-bound vesicles. gp160deltaCT induced stronger neutralizing responses than the other forms. Use of a helper plasmid for replicon particle packaging, in which the VEE envelope gene comprised a wild-type rather than a host range-adapted sequence, also enhanced immunogenicity. Neutralizing activity fractionated with immunoglobulin G. This activity was cross-reactive among a panel of five nonhomologous primary clade B strains and a Chinese clade C strain and minimally reactive against a Chinese clade E (circulating recombinant form 1) strain. The comparative neutralization of these strains by immune mouse sera was similar to the relative neutralizing effects of HNS2, and responses induced in rabbits were similar to those induced in mice. Together, these results demonstrate that neutralizing antibody responses can be induced in mice within 2 to 3 months that are similar in potency and cross-reactivity to those found in the chronically infected, long-term nonprogressive donor of HNS2. These findings support the expectation that induction of highly cross-reactive HIV-1 primary virus-neutralizing activity by vaccination may be realized.  相似文献   

3.
Attempts to elicit broadly neutralizing antibody responses by human immunodeficiency virus type 1 (HIV-1) vaccine antigens have been met with limited success. To better understand the requirements for cross-neutralization of HIV-1, we have characterized the neutralizing antibody specificities present in the sera of three asymptomatic individuals exhibiting broad neutralization. Two individuals were infected with clade B viruses and the third with a clade A virus. The broadly neutralizing activity could be exclusively assigned to the protein A-reactive immunoglobulin G (IgG) fraction of all three donor sera. Neutralization inhibition assays performed with a panel of linear peptides corresponding to the third hypervariable (V3) loop of gp120 failed to inhibit serum neutralization of a panel of HIV-1 viruses. The sera also failed to neutralize chimeric simian immunodeficiency virus (SIV) and HIV-2 viruses displaying highly conserved gp41-neutralizing epitopes, suggesting that antibodies directed against these epitopes likely do not account for the broad neutralizing activity observed. Polyclonal IgG was fractionated on recombinant monomeric clade B gp120, and the neutralization capacities of the gp120-depleted samples were compared to that of the original polyclonal IgG. We found that the gp120-binding antibody population mediated neutralization of some isolates, but not all. Overall, the data suggest that broad neutralization results from more than one specificity in the sera but that the number of these specificities is likely small. The most likely epitope recognized by the monomeric gp120 binding neutralizing fraction is the CD4 binding site, although other epitopes, such as the glycan shield, cannot be excluded.  相似文献   

4.
A small proportion of HIV-infected individuals generate a neutralizing antibody (NAb) response of exceptional magnitude and breadth. A detailed analysis of the critical epitopes targeted by broadly neutralizing antibodies should help to define optimal targets for vaccine design. HIV-1-infected subjects with potent cross-reactive serum neutralizing antibodies were identified by assaying sera from 308 subjects against a multiclade panel of 12 "tier 2" viruses (4 each of subtypes A, B, and C). Various neutralizing epitope specificities were determined for the top 9 neutralizers, including clade A-, clade B-, clade C-, and clade A/C-infected donors, by using a comprehensive set of assays. In some subjects, neutralization breadth was mediated by two or more antibody specificities. Although antibodies to the gp41 membrane-proximal external region (MPER) were identified in some subjects, the subjects with the greatest neutralization breadth targeted gp120 epitopes, including the CD4 binding site, a glycan-containing quaternary epitope formed by the V2 and V3 loops, or an outer domain epitope containing a glycan at residue N332. The broadly reactive HIV-1 neutralization observed in some subjects is mediated by antibodies targeting several conserved regions on the HIV-1 envelope glycoprotein.  相似文献   

5.
We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.  相似文献   

6.
Compared with human immunodeficiency virus type 1 (HIV-1), little is known about the susceptibility of HIV-2 to antibody neutralization. We characterized the potency and breadth of neutralizing antibody (NAb) responses in 64 subjects chronically infected with HIV-2 against three primary HIV-2 strains: HIV-2(7312A), HIV-2(ST), and HIV-2(UC1). Surprisingly, we observed in a single-cycle JC53bl-13/TZM-bl virus entry assay median reciprocal 50% inhibitory concentration (IC(50)) NAb titers of 1.7 × 10(5), 2.8 × 10(4), and 3.3 × 10(4), respectively. A subset of 5 patient plasma samples tested against a larger panel of 17 HIV-2 strains where the extracellular gp160 domain was substituted into the HIV-2(7312A) proviral backbone showed potent neutralization of all but 4 viruses. The specificity of antibody neutralization was confirmed using IgG purified from patient plasma, HIV-2 Envs cloned by single-genome amplification, viruses grown in human CD4(+) T cells and tested for neutralization sensitivity on human CD4(+) T target cells, and, as negative controls, env-minus viruses pseudotyped with HIV-1, vesicular stomatitis virus, or murine leukemia virus Env glycoproteins. Human monoclonal antibodies (MAbs) specific for HIV-2 V3 (6.10F), V4 (1.7A), CD4 binding site (CD4bs; 6.10B), CD4 induced (CD4i; 1.4H), and membrane-proximal external region (MPER; 4E10) epitopes potently neutralized the majority of 32 HIV-2 strains bearing Envs from 13 subjects. Patient antibodies competed with V3, V4, and CD4bs MAbs for binding to monomeric HIV-2 gp120 at titers that correlated significantly with NAb titers. HIV-2 MPER antibodies did not contribute to neutralization breadth or potency. These findings indicate that HIV-2 Env is highly immunogenic in natural infection, that high-titer broadly neutralizing antibodies are commonly elicited, and that unlike HIV-1, native HIV-2 Env trimers expose multiple broadly cross-reactive epitopes readily accessible to NAbs.  相似文献   

7.
Preservation of the conformation of recombinant gp120 in an adjuvant, enabling it to elicit conformation-dependent, epitope-specific, broadly neutralizing antibodies, may be critical for the development of any gp120-based human immunodeficiency virus type 1 (HIV-1) vaccine. It was hypothesized that recombinant gp120 complexed with recombinant CD4 could stabilize the conformation-dependent neutralizing epitopes and effectively deliver them to the immune system. Therefore, a soluble CD4-gp120 complex in Syntex adjuvant formulation was tested with mice for its ability to induce neutralizing anti-gp120 antibody responses. Seventeen monoclonal antibodies (MAbs) were generated and characterized. Immunochemical studies, neutralization assays, and mapping studies with gp120 mutants indicated that the 17 MAbs fell into three groups. Four of them were directed to what is probably a conformational epitope involving the C1 domain and did not possess virus-neutralizing activities. Another four MAbs bound to V3 peptide 302-321 and exhibited cross-reactive gp120 binding and relatively weak virus-neutralizing activities. These MAbs were very sensitive to amino acid substitutions, not only in the V3 regions but also in the base of the V1/V2 loop, implying a conformational constraint on the epitope. The last group of nine MAbs recognized conformation-dependent epitopes near the CD4 binding site of gp120 and inhibited the gp120-soluble CD4 interaction. Four of these nine MAbs showed broadly neutralizing activities against multiple laboratory-adapted strains of HIV-1, three of them neutralized only HIVIIIB, and the two lower-affinity MAbs did not neutralize any strain tested. Collectively, the results from this study indicate that immunization with the CD4-gp120 complex can elicit antibodies to conformationally sensitive gp120 epitopes, with some of the antibodies having broadly neutralizing activities. We suggest that immunization with CD4-gp120 complexes may be worth evaluating further for the development of an AIDS vaccine.  相似文献   

8.
During human immunodeficiency virus type 1 (HIV-1) infection, patients develop various levels of neutralizing antibody (NAb) responses. In some cases, patient sera can potently neutralize diverse strains of HIV-1, but the antibody specificities that mediate this broad neutralization are not known, and their elucidation remains a formidable challenge. Due to variable and nonneutralizing determinants on the exterior envelope glycoprotein (Env), nonnative Env protein released from cells, and the glycan shielding that assembles in the context of the quaternary structure of the functional spike, HIV-1 Env elicits a myriad of binding antibodies. However, few of these antibodies can neutralize circulating viruses. We present a systematic analysis of the NAb specificities of a panel of HIV-1-positive sera, using methodologies that identify both conformational and continuous neutralization determinants on the HIV-1 Env protein. Characterization of sera included selective adsorption with native gp120 and specific point mutant variants, chimeric virus analysis, and peptide inhibition of viral neutralization. The gp120 protein was the major neutralizing determinant for most sera, although not all neutralization activity against all viruses could be identified. In some broadly neutralizing sera, the gp120-directed neutralization mapped to the CD4 binding region of gp120. In addition, we found evidence that regions of the gp120 coreceptor binding site may also be a target of neutralizing activity. Sera displaying limited neutralization breadth were mapped to the immunogenic V3 region of gp120. In a subset of sera, we also identified NAbs directed against the conserved, membrane-proximal external region of gp41. These data allow a more detailed understanding of the humoral responses to the HIV-1 Env protein and provide insights regarding the most relevant targets for HIV-1 vaccine design.  相似文献   

9.
Host cell-mediated proteolytic cleavage of the human immunodeficiency virus type 1 (HIV-1) gp160 precursor glycoprotein into gp120 and gp41 subunits is required to generate fusion-competent envelope glycoprotein (Env) spikes. The gp120-directed broadly neutralizing monoclonal antibodies (bNabs) isolated from HIV-infected individuals efficiently recognize fully cleaved JRFL Env spikes; however, nonneutralizing gp120-directed monoclonal antibodies isolated from infected or vaccinated subjects recognize only uncleaved JRFL spikes. Therefore, as an immunogen, cleaved spikes that selectively present desired neutralizing epitopes to B cells may elicit cross-reactive neutralizing antibodies. Accordingly, we inoculated nonhuman primates (NHPs) with plasmid DNA encoding transmembrane-anchored, cleaved JRFL Env or by electroporation (EP). Priming with DNA expressing soluble, uncleaved gp140 trimers was included as a comparative experimental group of NHPs. DNA inoculation was followed by boosts with soluble JRFL gp140 trimers, and control NHPs were inoculated with soluble JRFL protein trimers without DNA priming. In the TZM-bl assay, elicitation of neutralizing antibodies against HIV-1 tier 1 isolates was robust following the protein boost. Neutralization of tier 2 isolates was detected, but only in animals primed with plasmid DNA and boosted with trimeric protein. Using the more sensitive A3R5 assay, consistent neutralization of both clade B and C tier 2 isolates was detected from all regimens assessed in the current study, exceeding levels achieved by our previous vaccine regimens in primates. Together, these data suggest a potential advantage of B cell priming followed by a rest interval and protein boosting to present JRFL Env spikes to the immune system to better generate HIV-1 cross-clade neutralizing antibodies.  相似文献   

10.
Current human immunodeficiency virus type 1 (HIV-1) envelope vaccine candidates elicit high antibody binding titers with neutralizing activity against T-cell line-adapted but not primary HIV-1 isolates. Serum antibodies from these human vaccine recipients were also found to be preferentially directed to linear epitopes within gp120 that are poorly exposed on native gp120. Systemic immunization of rabbits with an affinity-purified oligomeric gp160 protein formulated with either Alhydrogel or monophosphoryl lipid A-containing adjuvants resulted in the induction of high-titered serum antibodies that preferentially bound epitopes exposed on native forms of gp120 and gp160, recognized a restricted number of linear epitopes, efficiently bound heterologous strains of monomeric gp120 and cell surface-expressed oligomeric gp120/gp41, and neutralized several strains of T-cell line-adapted HIV-1. Additionally, those immune sera with the highest oligomeric gp160 antibody binding titers had neutralizing activity against some primary HIV-1 isolates, using phytohemagglutinin-stimulated peripheral blood mononuclear cell targets. Induction of an antibody response preferentially reactive with natively folded gp120/gp160 was dependent on the tertiary structure of the HIV-1 envelope immunogen as well as its adjuvant formulation, route of administration, and number of immunizations administered. These studies demonstrate the capacity of a soluble HIV-1 envelope glycoprotein vaccine to elicit an antibody response capable of neutralizing primary HIV-1 isolates.  相似文献   

11.
Clade C is one of the most prevalent genetic subtypes of human immunodeficiency virus type 1 (HIV-1) in the world today and one of the least studied with respect to neutralizing antibodies. Most information on HIV-1 serology as it relates to neutralization is derived from clade B. Clade C primary isolates of HIV-1 from South Africa and Malawi were shown here to resemble clade B isolates in their resistance to inhibition by soluble CD4 and their sensitivity to neutralization by human monoclonal antibody immunoglobulin G1b12 and, to a lesser extent, 2F5. Unlike clade B isolates, however, all 16 clade C isolates examined resisted neutralization by 2G12. Infection with clade C HIV-1 in a cohort of female sex workers in South Africa generated antibodies that neutralized the autologous clade C isolate and T-cell-line-adapted (TCLA) strains of clade B. Neutralization of clade B TCLA strains was much more sensitive to the presence of autologous gp120 V3 loop peptides compared to the neutralization of clade C isolates in most cases. Thus, the native structure of gp120 on primary isolates of clade C will likely pose a challenge for neutralizing antibody induction by candidate HIV-1 vaccines much the same as it has for clade B. The autologous neutralizing antibody response following primary infection with clade C HIV-1 in South Africa matured slowly, requiring at least 4 to 5 months to become detectable. Once detectable, extensive cross-neutralization of heterologous clade C isolates from South Africa was observed, suggesting an unusual degree of shared neutralization determinants at a regional level. This high frequency of cross-neutralization differed significantly from the ability of South African clade C serum samples to neutralize clade B isolates but did not differ significantly from results of other combinations of clade B and C reagents tested in checkerboard assays. Notably, two clade C serum samples obtained after less than 2 years of infection neutralized a broad spectrum of clade B and C isolates. Other individual serum samples showed a significant clade preference in their neutralizing activity. Our results suggest that clades B and C are each comprised of multiple neutralization serotypes, some of which are more clade specific than others. The clustering of shared neutralization determinants on clade C primary HIV-1 isolates from South Africa suggests that neutralizing antibodies induced by vaccines will have less epitope diversity to overcome at a regional level.  相似文献   

12.
A standard panel of subtype C human immunodeficiency virus type 1 (HIV-1) Env-pseudotyped viruses was created by cloning, sequencing, and characterizing functional gp160 genes from 18 acute and early heterosexually acquired infections in South Africa and Zambia. In general, the gp120 region of these clones was shorter (most evident in V1 and V4) and less glycosylated compared to newly transmitted subtype B viruses, and it was underglycosylated but no different in length compared to chronic subtype C viruses. The gp120s also exhibited low amino acid sequence variability (12%) in V3 and high variability (39%) immediately downstream of V3, a feature shared with newly transmitted subtype B viruses and chronic viruses of both subtypes. When tested as Env-pseudotyped viruses in a luciferase reporter gene assay, all clones possessed an R5 phenotype and resembled primary isolates in their sensitivity to neutralization by HIV-1-positive plasmas. Results obtained with a multisubtype plasma panel suggested partial subtype preference in the neutralizing antibody response to infection. The clones were typical of subtype C in that all were resistant to 2G12 (associated with loss of N-glycosylation at position 295) and most were resistant to 2F5, but all were sensitive to 4E10 and many were sensitive to immunoglobulin G1b12. Finally, conserved neutralization epitopes in the CD4-induced coreceptor binding domain of gp120 were poorly accessible and were difficult to induce and stabilize with soluble CD4 on Env-pseudotyped viruses. These results illustrate key genetic and antigenic properties of subtype C HIV-1 that might impact the design and testing of candidate vaccines. A subset of these gp160 clones are suitable for use as reference reagents to facilitate standardized assessments of vaccine-elicited neutralizing antibody responses.  相似文献   

13.
Previous studies characterized the third variable (V3) loop of the envelope gp120 as the principal neutralizing determinant for laboratory T-cell-line-adapted (TCLA) strains of human immunodeficiency virus type 1 (HIV-1). However, primary viruses isolated from infected individuals are more refractory to neutralization than TCLA strains, suggesting that qualitatively different neutralizing antibodies may be involved. In this study, we investigated whether the V3 loop constitutes a linear target epitope for antibodies neutralizing primary isolates. By using peptides representative of the V3 regions of various primary isolates, an early, relatively specific and persistent antibody response was detected in sera from HIV-infected patients. To assess the relationship between these antibodies and neutralization, the same peptides were used in competition and depletion experiments. Addition of homologous V3 peptides led to a competitive inhibition in the neutralization of the TCLA strain HIVMN/MT-4 but had no effect on the neutralization of the autologous primary isolate. Similarly, the removal of antibodies that bind to linear V3 epitopes resulted in a loss of HIVMN/MT-4 neutralization, whereas no decrease in the autologous neutralization was measured. The different roles of V3-specific antibodies according to the virus considered were thereby brought to light. This confirmed the involvement of V3 antibodies in the neutralization of a TCLA strain but emphasized a more pronounced contribution of either conformational epitopes or epitopes outside the V3 loop as targets for antibodies neutralizing primary HIV-1 isolates. This result underlines the need to focus on new vaccinal immunogens with epitopes able to induce broadly reactive and efficient antibodies that neutralize a wide range of primary HIV-1 isolates.  相似文献   

14.
Mader A  Kunert R 《PloS one》2012,7(6):e39063
The HIV-1 envelope protein harbors several conserved epitopes that are recognized by broadly neutralizing antibodies. One of these neutralizing sites, the MPER region of gp41, is targeted by one of the most potent and broadly neutralizing monoclonal antibody, 2F5. Different vaccination strategies and a lot of efforts have been undertaken to induce MPER neutralizing antibodies but little success has been achieved so far. We tried to consider the alternative anti-idiotypic vaccination approach for induction of 2F5-like antibodies. The previously developed and characterized anti-idiotypic antibody Ab2/3H6 was expressed as antibody fragment fusion protein with C-terminally attached immune-modulators and used for immunization of rabbits to induce antibodies specific for HIV-1. Only those rabbits immunized with immunogens fused with the immune-modulators developed HIV-1 specific antibodies. Anti-anti-idiotypic antibodies were affinity purified using a two-step affinity purification protocol which revealed that only little amount of the total rabbit IgG fraction contained HIV-1 specific antibodies. The characterization of the induced anti-anti-idiotypic antibodies showed specificity for the linear epitope of 2F5 GGGELDKWASL and the HIV-1 envelope protein gp140. Despite specificity for the linear epitope and the truncated HIV-1 envelope protein these antibodies were not able to exhibit virus neutralization activities. These results suggest that Ab2/3H6 alone might not be suitable as a vaccine.  相似文献   

15.
A major challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development is to elicit potent and broadly neutralizing antibodies that are effective against primary viral isolates. Previously, we showed that DNA prime-protein boost vaccination using HIV-1 gp120 antigens was more effective in eliciting neutralizing antibodies against primary HIV-1 isolates than was a recombinant gp120 protein-only vaccination approach. In the current study, we analyzed the difference in antibody specificities in rabbit sera elicited by these two immunization regimens using peptide enzyme-linked immunosorbent assay and a competitive virus capture assay. Our results indicate that a DNA prime-protein boost regimen is more effective than a protein-alone vaccination approach in inducing antibodies that target two key neutralizing domains: the V3 loop and the CD4 binding site. In particular, positive antibodies targeting several peptides that overlap with the known CD4 binding area were detected only in DNA-primed sera. Different profiles of antibody specificities provide insight into the mechanisms behind the elicitation of better neutralizing antibodies with the DNA prime-protein boost approach, and our results support the use of this approach to further optimize Env formulations for HIV vaccine development.  相似文献   

16.
The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.  相似文献   

17.
The relative resistance of human immunodeficiency virus type 1 (HIV-1) primary isolates (PIs) to neutralization by a wide range of antibodies remains a theoretical and practical barrier to the development of an effective HIV vaccine. One model to account for the differential neutralization sensitivity between Pls and laboratory (or T-cell line-adapted [TCLA]) strains of HIV suggests that the envelope protein (Env) complex is made more accessible to antibody binding as a consequence of adaptation to growth in established cell lines. Here, we revisit this question using genetically related PI and TCLA viruses and molecularly cloned env genes. By using complementary techniques of flow cytometry and virion binding assays, we show that monoclonal antibodies targeting the V3 loop, CD4-binding site, CD4-induced determinant of gp120, or the ectodomain of gp41 bind equally well to PI and TCLA Env complexes, despite large differences in neutralization outcome. The data suggest that the differential neutralization sensitivity of PI and TCLA viruses may derive not from differences in the initial antibody binding event but rather from differences in the subsequent functioning of the PI and TCLA Envs during virus entry. An understanding of these as yet undefined differences may enhance our ability to generate broadly neutralizing HIV vaccine immunogens.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) isolates from India mainly belong to clade C and are quite distinct from clade C isolates from Africa in terms of their phylogenetic makeup, serotype, and sensitivity to known human broadly neutralizing monoclonal antibodies. Because many of these properties are associated with the envelope proteins of HIV-1, it is of interest to study the envelope proteins of Indian clade C isolates as part of the ongoing efforts to develop a vaccine against HIV-1. To this end, we purified trimeric uncleaved gp145 of a CCR5 tropic Indian clade C HIV-1 (93IN101) from the conditioned medium of 293 cells. The purified protein was shown to be properly folded with stable structure by circular dichroism. Conformational integrity was further demonstrated by its high affinity binding to soluble CD4, CD4 binding site antibodies such as b12 and VRC01, quaternary epitope-specific antibody PG9, and CD4-induced epitope-specific antibody 17b. Sera from rabbits immunized with gp145 elicited high titer antibodies to various domains of gp120 and neutralized a broad spectrum of clade B and clade C HIV-1 isolates. Similar to other clade B and clade C envelope immunogens, most of the Tier 1 neutralizing activity could be absorbed with the V3-specific peptide. Subsequent boosting of these rabbits with a clade B HIV-1 Bal gp145 resulted in an expanded breadth of neutralization of HIV-1 isolates. The present study strongly supports the inclusion of envelopes from Indian isolates in a future mixture of HIV-1 vaccines.  相似文献   

19.
The identification and characterization of new human monoclonal antibodies (hMAbs) able to neutralize primary human immunodeficiency virus type 1 (HIV-1) isolates from different subtypes may help in our understanding of the mechanisms of virus entry and neutralization and in the development of entry inhibitors and vaccines. For enhanced selection of broadly cross-reactive antibodies, soluble HIV-1 envelope glycoproteins (Envs proteins) from two isolates complexed with two-domain soluble CD4 (sCD4) were alternated during panning of a phage-displayed human antibody library; these two Env proteins (89.6 and IIIB gp140s), and one additional Env (JR-FL gp120) alone and complexed with sCD4 were used for screening. An antibody with relatively long HCDR3 (17 residues), designated m14, was identified that bound to all antigens and neutralized heterologous HIV-1 isolates in multiple assay formats. Fab m14 potently neutralized selected well-characterized subtype B isolates, including JRCSF, 89.6, IIIB, and Yu2. Immunoglobulin G1 (IgG1) m14 was more potent than Fab m14 and neutralized 7 of 10 other clade B isolates; notably, although the potency was on average significantly lower than that of IgG1 b12, IgG1 m14 neutralized two of the isolates with significantly lower 50% inhibitory concentrations than did IgG1 b12. IgG1 m14 neutralized four of four selected clade C isolates with potency higher than that of IgG1 b12. It also neutralized 7 of 17 clade C isolates from southern Africa that were difficult to neutralize with other hMAbs and sCD4. IgG1 m14 neutralized four of seven primary HIV-1 isolates from other clades (A, D, E, and F) much more efficiently than did IgG1 b12; for the other three isolates, IgG b12 was much more potent. Fab m14 bound with high (nanomolar range) affinity to gp120 and gp140 from various isolates; its binding was reduced by soluble CD4 and antibodies recognizing the CD4 binding site (CD4bs) on gp120, and its footprint as defined by alanine-scanning mutagenesis overlaps that of b12. These results suggest that m14 is a novel CD4bs cross-reactive HIV-1-neutralizing antibody that exhibits a different inhibitory profile compared to the only known potent broadly neutralizing CD4bs human antibody, b12, and may have implications for our understanding of the mechanisms of immune evasion and for the development of inhibitors and vaccines.  相似文献   

20.
The broadly neutralizing monoclonal antibody (MAb) 4E10 recognizes a linear epitope in the C terminus of the membrane-proximal external region (MPER) of gp41. This epitope is particularly attractive for vaccine design because it is highly conserved among human immunodeficiency virus type 1 (HIV-1) strains and neutralization escape in vivo has not been observed. Multiple env genes were cloned from an HIV-1 subtype C virus isolated from a 7-year-old perinatally infected child who had anti-MPER neutralizing antibodies. One clone (TM20.13) was resistant to 4E10 neutralization as a result of an F673L substitution in the MPER. Frequency analysis showed that F673L was present in 33% of the viral variants and in all cases was linked to the presence of an intact 2F5 epitope. Two other envelope clones were sensitive to 4E10 neutralization, but TM20.5 was 10-fold less sensitive than TM20.6. Substitutions at positions 674 and 677 within the MPER rendered TM20.5 more sensitive to 4E10 but had no effect on TM20.6. Using chimeric and mutant constructs of these two variants, we further demonstrated that the lentivirus lytic peptide-2 domain in the cytoplasmic tail affected the accessibility of the 4E10 epitope, as well as virus infectivity. Collectively, these genetic changes in the face of a neutralizing antibody response to the MPER strongly suggested immune escape from antibody responses targeting this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号