首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The species richness (number of vascular plants per hectare) of Australian plant communities (containing a mosaic of gap, regeneration, maturation and senescent phases) is correlated with the annual biomass productivity of the overstorey canopy.The annual production of leaves and stem in the canopy of the plant community is shown to be limited by the requirements of photosynthesis (particularly light and the availability of water) and the length of the growing season.The species richness of Australian plant communities is the product of the blance between the dominance of the overstorey and the response of the understorey to the shading of the overstorey. For all climatic regions and zones the species richness of the overstorey of the plant community is shown to be exponentially related to the annual shoot growth of the overstorey canopy, until the latitudinal or altitudinal tree line is reached. With latitudinal increase outside the tropics, overstorey canopies of forest communities absorb increasingly more of the incident solar radiation. markedly reducing the species richness of the understorey strata. In contrast, in these latitudes the overstorey of plant communities with widely spaced trees or tall shrubs will absorb far less solar radiation, thus enabling the species richness of the understorey to be maintained.  相似文献   

2.
Aim To evaluate the relative importance of climate, productivity, environmental heterogeneity, biotic associations and habitat use by cattle to account for the species richness of trees, shrubs and herbs across the Subantarctic–Patagonian transition. Location An area of c. 150 × 150 km, within the transition zone between the Subantarctic and Patagonian subregions on the eastern slope of the Andes (c. 39–42° S, 70–72° W). Methods All vascular plants found at each one of 50 (10 × 10 m) sampling plots were counted to estimate the local tree, shrub and herb species richness. Path analysis was used to evaluate the relationship between the richness of the three life‐forms and plant cover, dried litter biomass, mean annual temperature, annual precipitation, daily temperature range, substrate heterogeneity and number of faecal pats. Principal coordinates of neighbour matrices was used to model the spatial autocorrelation of the data. Results Total plant species richness showed a unimodal pattern of spatial variation across the transition. Richness responded positively to indirect effects of precipitation mediated through plant cover, but there was a negative overall effect of precipitation on richness towards the west of the transition, most strongly for trees. An increase in substrate heterogeneity promoted a local increase in herb and shrub richness; the richness of trees increased in sites with steeper slopes. Canopy closure had a direct negative impact on herb richness; it also increased the local accumulation of litter, which negatively affected shrub and herb richness. The impact of habitat use by cattle negatively affected herb richness in areas to the east of the biogeographical transition. Main conclusions We suggest that the importance of indirect climatic effects mediated by vegetation cover can account for species richness patterns across this transition, most strongly for woody species, which supports the productivity hypothesis. The southern temperate forests towards the west may represent a deviation from the predictions of the water–energy dynamics hypothesis. Dissimilar spatial patterns of variation in the richness of woody and herbaceous species, and their different responses to climatic and heterogeneity variables across the transition, suggest that plant life‐form influences the plant species richness–environment relationships.  相似文献   

3.
In Brazil, cacao is mostly planted beneath shade trees. The diversity of shade trees varies from monospecific to highly diverse canopies, characteristic of pristine Atlantic Forest. This study evaluates the relationships between family richness of Hymenoptera-Parasitica and Chrysidoidea, and tree species richness and density, the species richness of herbaceous understorey, and the area and age of the cacao agroforestry system. We sampled 16 cacao agroforestry systems, with canopy diversity ranging from one to 22 tree species per hectare, in three seasons: summer (March), winter (August) and spring (November). Parasitoids were sampled using eight Malaise-Townes traps per site. Tree species richness and density were enumerated within 1 ha at each site, and herbaceous plant species richness was calculated in eight 1 m2 plots, within the hectare. The number of parasitoid families increased with tree species richness and density in spring and summer, but decreased in winter. Neither species richness of herbaceous plants nor area and age of the system affected parasitoid family richness. We suggest that the increase of parasitoid diversity with tree species richness and density in warmer seasons reflects increasing heterogeneity and availability of resources. The decrease in parasitoid family number with tree density in winter may be due to local impoverishment of resources, leading to parasitoid emigration to neighbouring forest remnants. This result implies that a higher diversity of shade trees will help to maintain high parasitoid levels and, in consequence, higher levels of natural enemies of cacao pests, particularly in the warmer seasons. This prediction is borne out in the experience of cacao producers. The proper management of shade tree diversity will play a vital role in maintaining the sustainability of cacao agroforestry production systems in the tropics and, concurrently, will maintain high biodiversity values in these locations.  相似文献   

4.
以太白山牛皮桦林林隙内草本植物总数为区域物种丰富度,分别采用0.25m2和1m2样方重复抽样的丰富度平均值为局域物种丰富度,来探讨区域物种多样性变异对局域多样性的影响。结果显示:(1)0.25m2和1m2局域物种丰富度与区域物种丰富度显著相关(r=0.791和r=0.861),且随区域物种丰富度的增加而增加;同时,林隙面积也能显著增加局域和区域物种丰富度。(2)控制林隙面积变量的多元回归分析显示,0.25m2和1m2局域物种丰富度与区域物种丰富度存在显著线性回归关系(R2=0.642和R2=0.743);方差分离分析显示,林隙面积仅能解释0.25m2和1m2局域物种丰富度变异的4.0%和4.4%,而区域物种丰富度能解释25.8%和35.3%。研究表明,区域物种丰富度变异在一定程度上决定着局域物种丰富度的组成。  相似文献   

5.
Abstract. Woody legumes growing in dry climates can increase soil nutrient content and facilitate plant growth in their understorey. We investigated differences in soil fertility and herbaceous community in relation to the presence and absence of the legume Retama sphaerocarpa in a shrubland in a mediterranean type climate. The results showed a higher content of limiting nutrients for plant growth, such as phosphorus and nitrogen, under the R. sphaerocarpa canopy. Herbaceous biomass, cover and nitrogen content increased below the canopy. However, species richness and diversity were diminished in the presence of a dense canopy of R. sphaerocarpa. Nitrogen isotopic analysis did not indicate a clear relationship between symbiotic fixation in R. sphaerocarpa and nitrogen content of soil and plants under its canopy. Nevertheless, herbs growing in the understorey showed a linear correlation between foliar N content and 15N values. The existence of a dense shrub canopy induced a smaller monthly variation in herb richness, diversity and biomass, suggesting that it provides a stable microhabitat facilitating herbaceous vegetation establishment and growth. The ‘shelter’ effect was more important when environmental conditions became stressful for herbaceous plants.  相似文献   

6.
Aim In contrast to non‐forest vegetation, the species richness–productivity (SR‐P) relationship in forests still remains insufficiently explored. Several studies have focused on the diversity of the tree layer, but the species richness of temperate deciduous forests is mainly determined by their species‐rich herb layer. The factors controlling herb‐layer productivity may differ from those affecting tree layers or open herbaceous vegetation, and thus the SR‐P relationship and its underlying processes may differ. However, the few relevant studies have reported controversial results. Here we explore the SR‐P relationship in the forest herb layer across different areas from oceanic to continental Europe, and put the effect of habitat productivity on species richness into context with other key factors, namely soil pH and light availability. Location North‐western Germany, Czech Republic, Slovakia and southern Urals (Russia). Methods We measured herb‐layer species richness and biomass, soil pH and tree‐layer cover in 156 vegetation plots of 100 m2 in deciduous forests. We analysed the SR‐P relationship and the relative importance of environmental variables using regression models for particular areas and separate forest types. Results We found a consistent monotonic increase in the herb‐layer species richness with productivity across all study areas and all forest types. Soil pH and light availability also affected species richness, but their relative importance differed among areas. Main conclusions We suggest that the monotonically increasing SR‐P relationship in the forest herb layer results from the fact that herb‐layer productivity is limited by canopy shading; competition within the herb layer is therefore not strong enough to exclude many species. This differs fundamentally from open herbaceous vegetation, which is not subject to such productivity limits and consequently exhibits a unimodal SR‐P relationship. We present a conceptual model that might explain the differences in the SR‐P relationship between the forest herb layer and open herbaceous vegetation.  相似文献   

7.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

8.
广西马尾松林植物功能多样性与生产力的关系   总被引:1,自引:0,他引:1  
探索植物多样性与生产力的关系可为森林经营与管理提供科学基础。本研究以广西4个地区的马尾松(Pinus massoniana)人工林群落为研究对象, 通过计算物种多样性、功能多样性和功能优势值, 运用相关分析、自动线性建模和方差划分等方法, 分析了多样性与生产力的关系。研究发现, 生产力与物种丰富度、Shannon指数、功能丰富度、功能均匀度极显著正相关(P < 0.01), 与物种均匀度、功能多样性、功能离散度、功能团个数、坡向显著正相关(P < 0.05), 与林龄极显著负相关(P < 0.01), 4个功能多样性参数和4个物种多样性参数两两之间皆为显著正相关; 未发现初始生物量制约生产力的提高; 方差划分最优模型中, 功能多样性参数效应、功能优势值效应和林龄效应分别解释生产力方差的56%、43%和33%, 功能多样性参数效应和功能优势值效应重叠部分高达27%; 生态位互补效应主要由功能丰富度和功能均匀度产生, 选择效应主要由生长型优势值产生; 生长型优势值为灌木的样地生产力较高, 次优种或过渡种对生态系统功能也有重要作用。以生产力为响应变量的自动线性建模最佳子集包括重要性由大到小的5个因素: 林龄、生长型优势值、功能丰富度、功能均匀度、功能团个数。建议维护森林功能多样性, 加强林下叶层植物保护, 用好功能重要的物种, 通过林下叶层的补偿性光合作用和生长竞争, 有效地提高生产力和生物多样性。  相似文献   

9.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

10.
Questions: Do growth forms and vascular plant richness follow similar patterns along an altitudinal gradient? What are the driving mechanisms that structure richness patterns at the landscape scale? Location: Southwest Ethiopian highlands. Methods: Floristic and environmental data were collected from 74 plots, each covering 400 m2. The plots were distributed along altitudinal gradients. Boosted regression trees were used to derive the patterns of richness distribution along altitudinal gradients. Results: Total vascular plant richness did not show any strong response to altitude. Contrasting patterns of richness were observed for several growth forms. Woody, graminoid and climber species richness showed a unimodal structure. However, each of these morphological groups had a peak of richness at different altitudes: graminoid species attained maximum importance at a lower elevations, followed by climbers and finally woody species at higher elevations. Fern species richness increased monotonically towards higher altitudes, but herbaceous richness had a dented structure at mid‐altitudes. Soil sand fraction, silt, slope and organic matter were found to contribute a considerable amount of the predicted variance of richness for total vascular plants and growth forms. Main Conclusions: Hump‐shaped species richness patterns were observed for several growth forms. A mid‐altitudinal richness peak was the result of a combination of climate‐related water–energy dynamics, species–area relationships and local environmental factors, which have direct effects on plant physiological performance. However, altitude represents the composite gradient of several environmental variables that were interrelated. Thus, considering multiple gradients would provide a better picture of richness and the potential mechanisms responsible for the distribution of biodiversity in high‐mountain regions of the tropics.  相似文献   

11.
Mediterranean climates are prone to a great variation in yearly precipitation. The effects on ecosystem will depend on the severity and timing of droughts. In this study we questioned how an extreme dry winter affects the carbon flux in the understorey of a cork oak woodland? What is the seasonal contribution of understorey vegetation to ecosystem productivity?We used closed-system portable chambers to measure CO2 exchange of the dominant shrub species (Cistus salviifolius, Cistus crispus and Ulex airensis), of the herbaceous layer and on bare soil in a cork oak woodland in central Portugal during the dry winter year of 2012. Shoot growth, leaf shedding, flower and fruit setting, above and belowground plant biomass were measured as well as seasonal leaf water potential. Eddy-covariance and micrometeorological data together with CO2 exchange measurements were used to access the understorey species contribution to ecosystem gross primary productivity (GPP).The herbaceous layer productivity was severely affected by the dry winter, with half of the yearly maximum aboveground biomass in comparison with the 6 years site average. The semi-deciduous and evergreen shrubs showed desynchronized phenophases and lagged carbon uptake maxima. Whereas shallow-root shrubs exhibited opportunistic characteristics in exploiting the understorey light and water resources, deep rooted shrubs showed better water status but considerably lower assimilation rates. The contribution of understorey vegetation to ecosystem GPP was lower during summer with 14% and maximum during late spring, concomitantly with the lowest tree productivity due to tree canopy renewal. The herbaceous vegetation contribution to ecosystem GPP never exceeded 6% during this dry year stressing its sensitivity to winter and spring precipitation.Although shrubs are more resilient to precipitation variability when compared with the herbaceous vegetation, the contribution of the understorey vegetation to ecosystem GPP can be quite variable and will ultimately depend of tree density and canopy cover.  相似文献   

12.
1. Trees present herbivorous insects with the greatest diversity of resources of any plant growth form. Both ontogeny and shading can alter suitability for arboreal insect herbivores. 2. We conducted a longitudinal study of tagged ‘mature’ (>12 months old) Eucalyptus camaldulensis leaves to compare the suitability of understorey and canopy trees for the leaf senescence-inducing psyllid, Cardiaspina albitextura. We quantified sugars and tannins as possible predictors of nymphal abundance. 3. Canopy leaves hosted double the number of nymphs as understorey leaves. Variation among individual trees (understorey and canopy) was the most important source of heterogeneity explaining psyllid abundance, although relative leaf age significantly influenced oviposition on canopy leaves. The diversity of foliar sugars was higher among canopy leaves than among understorey leaves. There was significant between-tree diversity in total hydrolysable tannins (HTs) and total condensed tannins (CTs) among understorey trees but not among canopy trees. Heterogeneity among understorey and canopy trees was explained by greater diversity of ellagitannins (HTs) than of CTs. 4. Shading is detrimental to the survival of nymphs on both host types, but sugars are unlikely to explain variation in suitability. Vescalagin (an ellagitannin) was negatively correlated with the abundance of nymphs on both host types.  相似文献   

13.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

14.
Disturbances of the soil and the tree canopy are crucial factors determining the diversity, composition and biomass of the herbaceous layer in forests. This study presents a detailed account of ground vegetation in permanent plots surveyed before and after invasion of wild boar (Sus scrofa) to a temperate deciduous broadleaf forest. Specifically, we aimed to quantify the effect of wild boar rooting on cover, richness and composition of spring ephemerals, summer green herbs and saplings of woody species in relation to tree canopy cover. Rooting frequency in sample plots increased from 0% in 2010 to 61% in 2013. In heavily rooted plots, the mean cover of spring ephemeral geophytes (mainly Anemone nemorosa, A. ranunculoides and Ranunculus ficaria) decreased from 75% to 39% between 2010 and 2013. Species richness of summer green herbs generally increased between 2010 and 2013 and was additionally positively affected by heavy rooting and low canopy cover. Rooting also caused heterogenization of the herbaceous layer and amplified ongoing compositional changes induced by changing light conditions. Frequency and richness of spring ephemeral and woody species remained unchanged. We conclude that overall species richness of the herbaceous layer may increase in the short‐term as a result of increased plant recruitment and seed dispersal. However, wild boar rooting can greatly reduce the ground cover of spring ephemerals in eutrophic broadleaf forests, thereby threatening their important ecological function. To avoid long‐term losses of characteristic spring flora elements, local population control of wild boar is necessary to reduce abundance and frequency of soil rooting.  相似文献   

15.
Local species richness–productivity (SR–P) relationship is usually reported as unimodal if long productivity gradients are sampled. However, it tends to be monotonically increasing in low-productive environments due to the decreasing part of the SR–P curve being truncated. Previous work indicated that this can hold true for forest herb layers, because of an upper bound on productivity caused mainly by canopy shading. Here, we ask whether the same pattern exists in a region with an upper bound on productivity caused by a harsh climate. We sampled herbaceous vegetation of boreal forests and grasslands in a low-productive region of central Yakutia (NE Siberia) with dry and winter-cool continental climate. We collected data on species composition, herb-layer productivity (aboveground herbaceous biomass), soil chemistry and light availability. We applied regression models to discriminate between monotonically increasing, decreasing and unimodal responses of herb-layer species richness to measured variables and analysed trends in the species-pool size and beta diversity along the productivity gradient. Our expectation of the monotonically increasing SR–P relationship was confirmed for neither forest herb layers nor grasslands. In the forest herb layers, no relationship was detected. In grasslands, the relationship was unimodal with species richness decline starting at much lower productivity levels than in more productive temperate grasslands. Potential causes for this decline are either limitation of local species richness by the species pool, which contains few species adapted to more productive habitats, or competitive exclusion, which can become an important control of species richness under lower levels of productivity than is the case in temperate grasslands.  相似文献   

16.
We examined the changes of species‐rich herbaceous community canopy structure and species diversity in a five‐year field experiment. Above‐ and below‐ground resource addition (fertilization and additional illumination with the help of mirrors) and cessation of annual mowing were applied as experimental treatments in 24 permanent plots of 40×40 cm. Canopy structure was studied by point quadrat sampling using laser beam to randomly position point quadrats at two different angles of observation – 60° and 120° from horizontal, north‐south direction. We hypothezised that the studied plant community is not light‐limited under the normal conditions (non‐fertilized and annually mown) but would become light‐limited after nutrient addition and/or cessation of mowing. In this case the effect of fertilization and cessation of mowing could be mitigated by introducing additional light resource (placing south‐facing mirrors).
Species richness in plots was not significantly altered by experimental treatments, most probably because of a strong input of species from surrounding areas by the means of lateral vegetative spread, compensating for the expected decrease of diversity with fertilization and cessation of mowing. Surprisingly, plant total coverage in a plot was the only variable significantly explaining plot richness, independent of experimental treatments and the year of observation. We therefore studied also species richness per unit coverage (standardized richness) which appeared to be significantly reduced by fertilization. Annual change of plant total coverage of a plot was good predictor of annual change of plot richness, except for the exceptionally dry period (1994–1995). There was no indication of light being limiting for the plants in control plots, but light obviously became limiting after nutrient addition – in fertilized plots additional illumination lead to a notably denser canopy. Generally, the average exposition of plant leaves surface was towards the north, independent of experimental treatments. However, in the exceptionally cloudy and cool year 1996 the situation was radically different – leaves were exposed predominantly towards the south, indicating that multi‐species canopy can plastically react to long‐term changes in light availability.  相似文献   

17.
The expansion of rainforest pioneer trees into long‐unburnt open forests has become increasingly widespread across high rainfall regions of Australia. Increasing tree cover can limit resource availability for understorey plant communities and reduce understorey diversity. However, it remains unclear if sclerophyll and rainforest trees differ in their competitive exclusion of understory plant communities, which contain most of the floristic diversity of open forests. Here, we examine dry open forest across contrasting fire histories (burnt and unburnt) and levels of rainforest invasion (sclerophyll or rainforest midstorey) to hindcast changes in understorey plant density, richness and composition. The influence of these treatments and other site variables (midstorey structure, midstorey composition and soil parameters) on understorey plant communities were all examined. This study is the first to demonstrate significantly greater losses of understorey species richness, particularly of dry open‐forest specialists, under an invading rainforest midstorey compared to a typical sclerophyll midstorey. Rainforest pioneers displaced over half of the understorey plant species, and reduced ground cover and density of dry forest specialists by ~90%. Significant understorey declines also occurred with increased sclerophyll midstorey cover following fire exclusion, although losses were typically less than half that of rainforest‐invaded sites over the same period. Understorey declines were closely related to leaf area index and basal area of rainforest and wattle trees, suggesting competitive exclusion through shading and potentially belowground competition for water. Around 20% of displaced species lacked any capacity for population recovery, while transient seed banks or distance‐limited dispersal may hinder recovery for a further 68%. We conclude that rainforest invasion leads to significant declines in understorey plant diversity and cover in open forests. To avoid elimination of local native plant populations in open forests, fires should occur with sufficient frequency to prevent overstorey cover from reaching a level where shade‐intolerant species fail to thrive.  相似文献   

18.
Question: Are vines light‐demanding species? Location: Temperate evergreen rain forest of southern Chile (40°39′S, 72°11′W). Methods: In 45 plots of 25 m2 distributed in treefall canopy gaps, secondary forest stands and old‐growth forest (15 plots per light environment), all climbing and non‐supported vines were counted and identified to species level, and canopy openness was quantified using hemispherical photographs. Vine abundance and diversity (species richness and Simpson's index) were compared in the three light environments and similarity between vine communities was estimated using Jaccard's similarity coefficient. We also determined the relationship between light niche breadth and local dominance at the species level. Results: In total there were 2510 vine individuals of 14 species. Canopy openness was significantly different in the three light environments. Species richness, diversity, community composition and density of vines were similar in treefall gaps, secondary and old‐growth forest. Of the seven more common vine species, which accounted for 91% of all vines, three had even distribution, two were more abundant in the shaded understorey, and two had higher density in well‐lit sites. Local dominance of vine species and niche breadth were not significantly associated. Conclusions: Our study in a temperate rain forest questions the widespread notion of vines as pioneer‐like species, which may be a consequence of the abundance of some lianas in disturbed sites of tropical forests. Functional arguments are needed to justify a general hypothesis on light requirements of vines, which constitute a vast group of species.  相似文献   

19.
The increase of species richness with sampling area and the decrease with latitude and altitude are two of the most frequently studied patterns in biogeography. However, few studies have simultaneously examined these two patterns to investigate how species–area relationships (SAR) vary with latitude and altitude. In this study, we explore the spatial patterns of SAR in forests in China by investigating numbers of species by life form group (trees, shrubs and herbs) in 32 nested plots from 12 mountains ranging from 18.7°N to 51.9°N in latitude and from 300 to 3150 m in altitude. The slopes of the power law SAR (z‐values) decreased with increasing latitude for all life forms except herbaceous plants, and also decreased with increasing altitude for all life forms but not for shrubs. Latitude and altitude, as well as their interactions, together explained 65.4, 61.8, 48.9 and 45.3% of the variation in z‐values for overall species, trees, shrubs and herbaceous plants, respectively. In addition, actual evapotranspiration affected SAR significantly, but this effect varied significantly among life forms. We concluded that there are significant geographical patterns of SAR for China's forests, which is primarily controlled by energy availability.  相似文献   

20.
Question: Knowledge of the interaction between understorey herb and overstorey tree layer diversity is mostly restricted to temperate forests. How do tree layer diversity and environmental variables affect herb layer attributes in subtropical forests and do these relationships change in the course of succession? Do abundance and diversity of woody saplings within the herb layer shift during succession? Location: Subtropical broad‐leaved forests in southeast China (29°8′18″‐29°17′29″N, 118°2′14″118°11′12″E). Methods: A full inventory of the herb layer including all plants below 1‐m height was done in 27 plots (10 × 10 m) from five successional stages (<20, <40, <60, <80 and ≥80 yr). We quantified the contribution of different life forms (herbaceous, woody and climber species) to herb layer diversity and productivity and analysed effects of environmental variables and tree layer diversity on these attributes. Results: Herb layer composition followed a successional gradient, as revealed by non‐metric multidimensional scaling (NMDS), but diversity was not correlated to the successional gradient. There was no correlation of diversity across layers. Herb layer productivity was neither affected by tree layer diversity nor by herb layer diversity. Although abundance of woody species in the herb layer decreased significantly during succession, woody species contributed extraordinarily to herb layer species diversity in all successional stages. All environmental factors considered had little impact on herb layer attributes. Conclusions: The subtropical forest investigated displays an immense richness of woody species in the herb layer while herbaceous species are less prominent. Species composition of the herb layer shows a clear successional pattern, however, the presence or absence of certain species appears to be random.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号