首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
microRNAs (miRNAs) are small non-coding RNAs that regulate mRNA stability and translation through the action of the RNAi-induced silencing complex (RISC). Our current understanding of miRNA function is inferred largely from studies of the effects of miRNAs on steady-state mRNA levels and from seed match conservation and context in putative targets. Here we have taken a more direct approach to these issues by comprehensively assessing the miRNAs and mRNAs that are physically associated with Argonaute 2 (Ago2), which is a core RISC component. We transfected HEK293T cells with epitope-tagged Ago2, immunopurified Ago2 together with any associated miRNAs and mRNAs, and quantitatively determined the levels of these RNAs by microarray analyses. We found that Ago2 immunopurified samples contained a representative repertoire of the cell's miRNAs and a select subset of the cell's total mRNAs. Transfection of the miRNAs miR-1 and miR-124 caused significant changes in the association of scores of mRNAs with Ago2. The mRNAs whose association with Ago2 increased upon miRNA expression were much more likely to contain specific miRNA seed matches and to have their overall mRNA levels decrease in response to the miRNA transfection than expected by chance. Hundreds of mRNAs were recruited to Ago2 by each miRNA via seed sequences in 3'-untranslated regions and coding sequences and a few mRNAs appear to be targeted via seed sequences in 5'-untranslated regions. Microarray analysis of Ago2 immunopurified samples provides a simple, direct method for experimentally identifying the targets of miRNAs and for elucidating roles of miRNAs in cellular regulation.  相似文献   

3.
The human genome encodes over 500 microRNAs (miRNAs), small RNAs (19 to 26 nucleotides [nt]) that regulate the expressions of diverse cellular genes. Many cellular processes are altered through a variety of mechanisms by human cytomegalovirus (HCMV) infection. We asked whether HCMV infection leads to changes in the expression of cellular miRNAs and whether HCMV-regulated miRNAs are important for HCMV replication. Levels of most miRNAs did not change markedly during infection, but some were positively or negatively regulated. Patterns of miRNA expression were linked to the time course of infection. Some similarly reregulated miRNAs share identical or similar seed sequences, suggesting coordinated regulation of miRNA species that have shared targets. miRNAs miR-100 and miR-101 were chosen for further analyses based on their reproducible changes in expression after infection and on the basis of having predicted targets in the 3' untranslated regions (3'-UTR) of genes encoding components of the mammalian target of rapamycin (mTOR) pathway, which is important during HCMV infection. Reporter genes that contain the 3'-UTR of mTOR (predicted targets for miR-100 and miR-101) or raptor (a component of the mTOR pathway; predicted site for miR-100) were constructed. Mimics of miR-100 and miR-101 inhibited expression from the mTOR construct, while only miR-100 inhibited the raptor construct. Together, miR-100 and miR-101 reduced mTOR protein levels. While the miR-100 and miR-101 mimics individually modestly inhibited production of infectious progeny, much greater inhibition was achieved with a combination of both (33-fold). Our key finding is that HCMV selectively manipulates the expression of some cellular miRNAs to help its own replication.  相似文献   

4.
5.
MicroRNAs (miRNAs) are small noncoding RNAs that function in literally all cellular processes. miRNAs interact with Argonaute (Ago) proteins and guide them to specific target sites located in the 3′-untranslated region (3′-UTR) of target mRNAs leading to translational repression and deadenylation-induced mRNA degradation. Most miRNAs are processed from hairpin-structured precursors by the consecutive action of the RNase III enzymes Drosha and Dicer. However, processing of miR-451 is Dicer independent and cleavage is mediated by the endonuclease Ago2. Here we have characterized miR-451 sequence and structure requirements for processing as well as sorting of miRNAs into different Ago proteins. Pre-miR-451 appears to be optimized for Ago2 cleavage and changes result in reduced processing. In addition, we show that the mature miR-451 only associates with Ago2 suggesting that mature miRNAs are not exchanged between different members of the Ago protein family. Based on cloning and deep sequencing of endogenous miRNAs associated with Ago1–3, we do not find evidence for miRNA sorting in human cells. However, Ago identity appears to influence the length of some miRNAs, while others remain unaffected.  相似文献   

6.
Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3′ untranslated region (UTR). Using RNA induced silencing complex immunoprecipitation (RISC-IP) techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV) miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5′UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5′UTRs.  相似文献   

7.
8.
9.
In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.  相似文献   

10.
Sorting of Drosophila small silencing RNAs   总被引:3,自引:0,他引:3  
Tomari Y  Du T  Zamore PD 《Cell》2007,130(2):299-308
In Drosophila, small interfering RNAs (siRNAs), which direct RNA interference through the Argonaute protein Ago2, are produced by a biogenesis pathway distinct from microRNAs (miRNAs), which regulate endogenous mRNA expression as guides for Ago1. Here, we report that siRNAs and miRNAs are sorted into Ago1 and Ago2 by pathways independent from the processes that produce these two classes of small RNAs. Such small-RNA sorting reflects the structure of the double-stranded assembly intermediates--the miRNA/miRNA( *) and siRNA duplexes--from which Argonaute proteins are loaded. We find that the Dcr-2/R2D2 heterodimer acts as a gatekeeper for the assembly of Ago2 complexes, promoting the incorporation of siRNAs and disfavoring miRNAs as loading substrates for Drosophila Ago2. A separate mechanism acts in parallel to favor miRNA/miRNA( *) duplexes and exclude siRNAs from assembly into Ago1 complexes. Thus, in flies small-RNA duplexes are actively sorted into Argonaute-containing complexes according to their intrinsic structures.  相似文献   

11.
MicroRNAs (miRNAs) are small non-coding RNAs mediating the regulation of gene expression in various biological contexts, including carcinogenesis. Here, we screened putative associations between 34, 45, and 103 miRNAs and 164, 391, and 81 mRNAs via Argonaute1 (Ago1) or Ago2 immunoprecipitation (IP) experiments in a colon cancer cell line. We used a combination of RIP Seq analysis. RNAs that were co-immunoprecipitated with Ago1 or Ago2 were used for massively parallel small RNA and mRNA sequencing. The detected miRNAs and mRNAs were further associated with one another based on in silico target predictions. Analysis of the putative associations indicated that, although Ago1 and Ago2 shared a similar repertory of miRNAs, the mRNAs possibly regulated by those miRNAs seemed different. The mRNAs detected with Ago1 IP were indicated to be frequently associated with genes having constitutive cellular functions, regulated by a smaller number of miRNAs, and appeared to receive more stringent translational regulation. In contrast, putative miRNA-mRNA associations detected with Ago2 IP appeared to be related to signal transduction genes, which had a larger number of possible miRNA binding sites. We then conducted a similar analysis using the colon cancer cells cultured under hypoxia and identified potential hypoxia-induced miRNA-mRNA associations, which included several well-characterized cancer-related genes as novel putative miRNA targets.  相似文献   

12.
Argonaute 2 (Ago2) is a key component of the RNA interference (RNAi) pathway, a gene-regulatory system that is present in most eukaryotes. Ago2 uses microRNAs (miRNAs) and small interfering RNAs (siRNAs) for targeting to homologous mRNAs which are then degraded or translationally suppressed. In plants and invertebrates, the RNAi pathway has well-described roles in antiviral defense, but its function in limiting viral infections in mammalian cells is less well understood. Here, we examined the role of Ago2 in replication of the betacoronavirus SARS-CoV-2, the etiologic agent of COVID-19. Microscopic analyses of infected cells revealed that a pool of Ago2 closely associates with viral replication sites and gene ablation studies showed that loss of Ago2 resulted in over 1,000-fold increase in peak viral titers. Replication of the alphacoronavirus 229E was also significantly increased in cells lacking Ago2. The antiviral activity of Ago2 was dependent on both its ability to bind small RNAs and its endonuclease function. Interestingly, in cells lacking Dicer, an upstream component of the RNAi pathway, viral replication was the same as in parental cells. This suggests that the antiviral activity of Ago2 is independent of Dicer processed miRNAs. Deep sequencing of infected cells by other groups identified several SARS-CoV-2-derived small RNAs that bind to Ago2. A mutant virus lacking the most abundant ORF7A-derived viral miRNA was found to be significantly less sensitive to Ago2-mediated restriction. This combined with our findings that endonuclease and small RNA-binding functions of Ago2 are required for its antiviral function, suggests that Ago2-small viral RNA complexes target nascent viral RNA produced at replication sites for cleavage. Further studies are required to elucidate the processing mechanism of the viral small RNAs that are used by Ago2 to limit coronavirus replication.  相似文献   

13.
Synthetic 3′-biotin-tagged microRNAs (miRNAs) have often been used to select interacting messenger RNA (mRNA) and noncoding RNA (ncRNA) targets. Here, we examined the extent of association of 3′-end biotinylated miR-27 with Argonaute (Ago) proteins in transfected human cells using a coimmunoprecipitation assay followed by Northern blot analysis. We report that biotinylated miR-27 does not efficiently associate with Ago compared to unmodified miR-27. These results suggest that 3′-end biotin-modified miRNAs are questionable monitors of miRNA function in cells.  相似文献   

14.
15.
16.
Argonaute (Ago) proteins bind to microRNA (miRNAs) and short interfering RNAs (siRNAs) and form the core components of effector complexes that mediate miRNA and siRNA function. Currently, there is a paucity of reliable antibodies against mammalian Ago proteins, thus precluding studies of endogenous Ago proteins from tissues. Here we report the development of 2A8, a novel anti-Ago monoclonal antibody that recognizes human and mouse Ago proteins and efficiently immunoprecipitates miRNAs. We report the characterization of 2A8 and its use to clone miRNAs from human brain and from preparations of human polymorphonuclear leukocytes (neutrophils), which revealed a prevalent miRNA with unusual features.  相似文献   

17.
18.
MicroRNAs (miRNAs) are small RNAs, 19–23 nucleotides in length, which regulate a variety of cellular processes. Human cytomegalovirus (HCMV) encodes only one intronic miRNA: human cytomegalovirus microRNA UL36 (hcmv-miR-UL36). In this study, we found that over-expression of hcmv-miR-UL36 resulted in a more than threefold increase in HCMV DNA synthesis at 24 h post infection. Fifteen putative targets of hcmv-miR-UL36 were identified using hybrid PCR, one being the HCMV UL138 gene that has previously been identified as a novel latency-associated determinant of HCMV infection. Down-regulation of UL138 expression by hcmv-miR-UL36 was validated using luciferase reporter assays and Western blot analysis in HEK293 cells. In the presence of hcmv-miR-UL36, we observed a 74.6% decrease in luciferase activity and a 46.2% decrease in HCMV UL138 protein expression. Our results indicate that hcmv-miR-UL36 may be a viral miRNA contributing to HCMV replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号