首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Dicer is essential for general microRNA (miRNA) biogenesis, vertebrate mir-451 is Dicer independent. Instead, its short pre-miRNA hairpin is ‘sliced’ by Ago2, then 3′-resected into mature miRNAs. Here, we show that Drosophila cells and animals generate functional small RNAs from mir-451-type precursors. However, their bulk maturation arrests as Ago-cleaved pre-miRNAs, which mostly associate with the RNAi effector AGO2. Routing of pre-mir-451 hairpins to the miRNA effector AGO1 was inhibited by Dicer-1 and its partner Loqs. Loss of these miRNA factors promoted association of pre-mir-451 with AGO1, which sliced them and permitted maturation into ∼23–26 nt products. The difference was due to the 3′ modification of single-stranded species in AGO2 by Hen1 methyltransferase, whose depletion permitted 3′ trimming of Ago-cleaved pre-miRNAs in AGO2. Surprisingly, Nibbler, a 3′–5′ exoribonuclease that trims ‘long’ mature miRNAs in AGO1, antagonized miR-451 processing. We used an in vitro reconstitution assay to identify a soluble, EDTA-sensitive activity that resects sliced pre-miRNAs in AGO1 complexes. Finally, we use deep sequencing to show that depletion of dicer-1 increases the diversity of small RNAs in AGO1, including some candidate mir-451-like loci. Altogether, we document unexpected aspects of miRNA biogenesis and Ago sorting, and provide insights into maturation of Argonaute-cleaved miRNA substrates.  相似文献   

2.
3.
A canonical biogenesis pathway involving sequential cleavage by the Drosha and Dicer RNAse III enzymes governs the maturation of most animal microRNAs. However, there exist a variety of alternative miRNA biogenesis pathways, most of which bypass Drosha processing. Recently, three groups described for the first time a vertebrate microRNA pathway that bypasses Dicer cleavage. This mechanism was characterized with respect to the highly conserved vertebrate gene mir-451, for which Drosha processing yields a short (42 nucleotide) hairpin that is directly loaded into Ago2, the sole vertebrate “Slicer” Argonaute. Ago2-mediated cleavage of this hairpin yields a 30 nucleotide intermediate, whose 3′ end is resected to generate the dominantly cloned ∼23 nucleotide mature miR-451. Knowledge of this pathway provides an unprecedented tool with which to express microRNAs and small interfering RNAs in Dicer mutant cells. More generally, the mir-451 backbone constitutes a new platform for gene silencing that complements existing shRNA technology.Key words: mir-451, Ago2, Slicer, Dicer-independent, erythropoiesis  相似文献   

4.
RNA interference (RNAi) can be induced by intracellular expression of a short hairpin RNA (shRNA). Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA). Dicer is also involved in microRNA (miRNA) processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2) protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these “AgoshRNA” molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.  相似文献   

5.
A canonical biogenesis pathway involving sequential cleavage by the Drosha and Dicer RNAse III enzymes governs the maturation of most animal microRNAs. However, there exist a variety of alternative miRNA biogenesis pathways, most of which bypass Drosha processing. Recently, three groups described for the first time a vertebrate microRNA pathway that bypasses Dicer cleavage. This mechanism was characterized with respect to the highly conserved vertebrate gene mir-451, for which Drosha processing yields a short (42 nucleotide) hairpin that is directly loaded into Ago2, the sole vertebrate "Slicer" Argonaute. Ago2-mediated cleavage of this hairpin yields a 30 nucleotide intermediate, whose 3' end is resected to generate the dominantly cloned ~23 nucleotide mature miR-451. Knowledge of this pathway provides an unprecedented tool with which to express microRNAs and small interfering RNAs in Dicer mutant cells. More generally, the mir-451 backbone constitutes a new platform for gene silencing that complements existing shRNA technology.  相似文献   

6.
Functional parameters of Dicer-independent microRNA biogenesis   总被引:1,自引:0,他引:1  
Until recently, a Dicer-class RNase III enzyme was believed to be essential for microRNA (miRNA) biogenesis in all animals. The conserved vertebrate locus mir-451 defies this expectation and instead matures by direct cleavage of its pre-miRNA hairpin via the Slicer activity of Argonaute2 (Ago2). In this study, we used structure-function analysis to define the functional parameters of Ago2-mediated miRNA biogenesis. These include (1) the requirement for base-pairing at most, but not all, positions within the pre-mir-451 stem; (2) surprisingly little influence of the 5'-nucleotide on Ago sorting; (3) substantial influence of Ago protein stoichiometry on mir-451 maturation; (4) strong influence of G:C content in the distal stem on 3' resection of cleaved mir-451 substrates; and (5) the influence of hairpin length on substrate utilization by Ago2 and Dicer. Unexpectedly, we find that certain hairpin lengths confer competence to mature via both Dicer-mediated and Ago2-mediated pathways, and we show, in fact, that a conventional shRNA can traverse the Dicer-independent pathway. Altogether, these data inform the design of effective Dicer-independent substrates for gene silencing and reveal novel aspects of substrate handling by Ago proteins.  相似文献   

7.
Small hairpin RNAs (shRNAs) having duplex lengths of 25–29 bp are normally processed by Dicer into short interfering RNAs (siRNAs) before incorporation into the RNA-induced silencing complex (RISC). However, shRNAs of ≤19 bp [short shRNAs (sshRNAs)] are too short for Dicer to excise their loops, raising questions about their mechanism of action. sshRNAs are designated as L-type or R-type according to whether the loop is positioned 3′ or 5′ to the guide sequence, respectively. Using nucleotide modifications that inhibit RNA cleavage, we show that R- but not L-sshRNAs require loop cleavage for optimum activity. Passenger-arm slicing was found to be important for optimal functioning of L-sshRNAs but much less important for R-sshRNAs that have a cleavable loop. R-sshRNAs could be immunoprecipitated by antibodies to Argonaute-1 (Ago1); complexes with Ago1 contained both intact and loop-cleaved sshRNAs. In contrast, L-sshRNAs were immunoprecipitated with either Ago1 or Ago2 and were predominantly sliced in the passenger arm of the hairpin. However, ‘pre-sliced’ L-sshRNAs were inactive. We conclude that active L-sshRNAs depend on slicing of the passenger arm to facilitate opening of the duplex, whereas R-sshRNAs primarily act via loop cleavage to generate a 5′-phosphate at the 5′-end of the guide strand.  相似文献   

8.
Synthetic 3′-biotin-tagged microRNAs (miRNAs) have often been used to select interacting messenger RNA (mRNA) and noncoding RNA (ncRNA) targets. Here, we examined the extent of association of 3′-end biotinylated miR-27 with Argonaute (Ago) proteins in transfected human cells using a coimmunoprecipitation assay followed by Northern blot analysis. We report that biotinylated miR-27 does not efficiently associate with Ago compared to unmodified miR-27. These results suggest that 3′-end biotin-modified miRNAs are questionable monitors of miRNA function in cells.  相似文献   

9.
The ribonuclease Dicer excises mature miRNAs from a diverse group of precursors (pre-miRNAs), most of which contain various secondary structure motifs in their hairpin stem. In this study, we analyzed Dicer cleavage in hairpin substrates deprived of such motifs. We searched for the factors other than the secondary structure, which may influence the length diversity and heterogeneity of miRNAs. We found that the nucleotide sequence at the Dicer cleavage site influences both of these miRNA characteristics. With regard to cleavage mechanism, we demonstrate that the Dicer RNase IIIA domain that cleaves within the 3′ arm of the pre-miRNA is more sensitive to the nucleotide sequence of its substrate than is the RNase IIIB domain. The RNase IIIA domain avoids releasing miRNAs with G nucleotide and prefers to generate miRNAs with a U nucleotide at the 5′ end. We also propose that the sequence restrictions at the Dicer cleavage site might be the factor that contributes to the generation of miRNA duplexes with 3′ overhangs of atypical lengths. This finding implies that the two RNase III domains forming the single processing center of Dicer may exhibit some degree of flexibility, which allows for the formation of these non-standard 3′ overhangs.  相似文献   

10.
11.
Argonaute proteins bind small RNAs and mediate cleavage of complementary target RNAs. The human Argonaute protein Ago4 is catalytically inactive, although it is highly similar to catalytic Ago2. Here, we have generated Ago2-Ago4 chimeras and analyzed their cleavage activity in vitro. We identify several specific features that inactivate Ago4: the catalytic center, short sequence elements in the N-terminal domain, and an Ago4-specific insertion in the catalytic domain. In addition, we show that Ago2-mediated cleavage of the noncanonical miR-451 precursor can be carried out by any catalytic human Ago protein. Finally, phylogenetic analyses establish evolutionary distances between the Ago proteins. Interestingly, these distances do not fully correlate with the structural changes inactivating them, suggesting functional adaptations of individual human Ago proteins.  相似文献   

12.
It has been shown that imprecise cleavage of a primary or precursor RNA by Drosha or Dicer, respectively, may yield a group of microRNA (miRNA) variants designated as “isomiR”. Variations in the relative abundance of isoforms for a given miRNA among different species and different cell types beg the question whether these isomiRs might regulate target genes differentially. We compared the capacity of three miR-31 isoforms (miR-31-H, miR-31-P, and miR-31-M), which differ only slightly in their 5′- and/or 3′-end sequences, to regulate several known targets and a predicted target, Dicer. Notably, we found isomiR-31s displayed concordant and discordant regulation of 6 known target genes. Furthermore, we validated a predicted target gene, Dicer, to be a novel target of miR-31 but only miR-31-P could directly repress Dicer expression in both MCF-7 breast cancer cells and A549 lung cancer cells, resulting in their enhanced sensitivity to cisplatin, a known attribute of Dicer knockdown. This was further supported by reporter assay using full length 3′-untranslated region (UTR) of Dicer. Our findings not only revealed Dicer to be a direct target of miR-31, but also demonstrated that isomiRs displayed similar and disparate regulation of target genes in cell-based systems. Coupled with the variations in the distribution of isomiRs among different cells or conditions, our findings support the possibility of fine-tuning gene expression by miRNAs.  相似文献   

13.
Identification of novel argonaute-associated proteins   总被引:1,自引:0,他引:1  
RNA silencing processes are guided by small RNAs known as siRNAs and microRNAs (miRNAs) . They reside in ribonucleoprotein complexes, which guide the cleavage of complementary mRNAs or affect stability and translation of partial complementary mRNAs . Argonaute (Ago) proteins are at the heart of silencing effector complexes and bind the single-stranded siRNA and miRNA . Our biochemical analysis revealed that Ago2 is present in a pre-miRNA processing complex that is able to transfer the miRNA into a target-mRNA cleaving complex. To gain insight into the function and composition of RNA silencing complexes, we purified Ago1- and Ago2-containing complexes from human cells. Several known Ago1- and/or Ago2-associated proteins including Dicer were identified, but also two novel factors, the putative RNA helicase MOV10, and the RNA recognition motif (RRM)-containing protein TNRC6B/KIAA1093. The new proteins localize, similar to Ago proteins, to mRNA-degrading cytoplasmic P bodies, and they are functionally required to mediate miRNA-guided mRNA cleavage.  相似文献   

14.
Human adenoviruses (HAds) encode for one or two highly abundant virus-associated RNAs, designated VA RNAI and VA RNAII, which fold into stable hairpin structures resembling miRNA precursors. Here we show that the terminal stem of the VA RNAs originating from Ad4, Ad5, Ad11 and Ad37, all undergo Dicer dependent processing into virus-specific miRNAs (so-called mivaRNAs). We further show that the mivaRNA duplex is subjected to a highly asymmetric RISC loading with the 3′-strand from all VA RNAs being the favored strand, except for the Ad37 VA RNAII, where the 5′-mivaRNAII strand was preferentially assembled into RISC. Although the mivaRNA seed sequences are not fully conserved between the HAds a bioinformatics prediction approach suggests that a large fraction of the VA RNAII-, but not the VA RNAI-derived mivaRNAs still are able to target the same cellular genes. Using small RNA deep sequencing we demonstrate that the Dicer processing event in the terminal stem of the VA RNAs is not unique and generates 3′-mivaRNAs with a slight variation of the position of the 5′ terminal nucleotide in the RISC loaded guide strand. Also, we show that all analyzed VA RNAs, except Ad37 VA RNAI and Ad5 VA RNAII, utilize an alternative upstream A start site in addition to the classical +1 G start site. Further, the 5′-mivaRNAs with an A start appears to be preferentially incorporated into RISC. Although the majority of mivaRNA research has been done using Ad5 as the model system our analysis demonstrates that the mivaRNAs expressed in Ad11- and Ad37-infected cells are the most abundant mivaRNAs associated with Ago2-containing RISC. Collectively, our results show an unexpected variability in Dicer processing of the VA RNAs and a serotype-specific loading of mivaRNAs into Ago2-based RISC.  相似文献   

15.
16.
MicroRNAs (miRNAs) constitute an important class of small regulatory RNAs that are derived from distinct hairpin precursors (pre-miRNAs). In contrast to mature miRNAs, which have been characterized in numerous genome-wide studies of different organisms, research on global profiling of pre-miRNAs is limited. Here, using massive parallel sequencing, we have performed global characterization of both mouse mature and precursor miRNAs. In total, 87 369 704 and 252 003 sequencing reads derived from 887 mature and 281 precursor miRNAs were obtained, respectively. Our analysis revealed new aspects of miRNA/pre-miRNA processing and modification, including eight Ago2-cleaved pre-miRNAs, eight new instances of miRNA editing and exclusively 5′ tailed mirtrons. Furthermore, based on the sequences of both mature and precursor miRNAs, we developed a miRNA discovery pipeline, miRGrep, which does not rely on the availability of genome reference sequences. In addition to 239 known mouse pre-miRNAs, miRGrep predicted 41 novel ones with high confidence. Similar as known ones, the mature miRNAs derived from most of these novel loci showed both reduced abundance following Dicer knockdown and the binding with Argonaute2. Evaluation on data sets obtained from Caenorhabditis elegans and Caenorhabditis sp.11 demonstrated that miRGrep could be widely used for miRNA discovery in metazoans, especially in those without genome reference sequences.  相似文献   

17.
18.
19.
20.
miRNAs are key regulatory small non-coding RNAs involved in critical steps of melanoma tumorigenesis; however, the relationship between sequence specific variations at the 5′ or 3′ termini (isomiR) of a miRNA and cancer phenotype remains unclear. Deep-sequencing and qRT-PCR showed reduced expression of miR-144/451a cluster and most abundant isomiR (miR451a.1) in dysplastic nevi, in-situ and invasive melanomas compared to common nevi and normal skin (n = 101). miRNA in situ hybridization reproducibly confirmed lost miR-451a.1 in melanoma compared to nevus cells or adjacent keratinocytes. Significantly higher expression of miR-451a.1 was associated with amelanotic phenotype in melanomas (n = 47). In contrast, miR-451a was associated with melanotic phenotype, absent pagetoid scatter of intraepidermal melanocytes, superficial spreading histological subtype and tumor inflammation. Sequencing miRNAs from cultured melanocytes with cytoplasmic melanin gradient (light, medium to dark) showed absent miR-451a while revealing other melanin-associated miRNAs, e.g. miR-30b, miR-100 and miR-590 in darkly and let-7a, let-7i and let-7f in lightly to moderately pigmented cultured melanocytes. Ectopic expression of miR-144/451a in melanoma cell lines resulted in markedly higher levels of mature miR-451a.1 than miR451a or miR-144; and significantly retarded cell migration and inhibited invasion in a glucose-sensitive manner. Surprisingly, these effects were not mediated by calcium binding protein 39 (CAB39), a proven miR451a gene target. miR-144/miR-451a cluster is a novel miRNA locus with tumor suppressive activity in melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号