首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
A low-Mr tight binding proteinase inhibitor was purified from bovine muscle by alkaline denaturation of cysteine proteinases, gel filtration on Sephadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. Chromatofocusing separated three isoforms which are similar in their Mr of about 14 000, their stability with heating at 80 degrees C and their inhibitory activity towards cathepsin H, cathepsin B and papain. The equilibrium constants (Ki) were determined for these three cysteine proteinases but for cathepsin H, association (kass) and dissociation (kdiss) rate constants were also evaluated. Ki values of 56 nM and 8.4 nM were found for cathepsin B and cathepsin H, respectively. For papain, Ki was in the range of 0.1-1 nM. The kinetic features of enzyme-inhibitor binding suggest a possible role for this low-Mr protein inhibitor in controlling 'in vivo' cathepsin H proteolytic activity. With regard to cathepsin B, such a physiological role was less evident.  相似文献   

2.
Three classes of epidermal growth factor receptors on HeLa cells   总被引:5,自引:0,他引:5  
The kinetics of 125I-labeled epidermal growth factor (EGF) binding to receptors on HeLa cells were investigated. Scatchard analysis revealed the presence of 22,000 high affinity receptors (Kd = 0.12 nM) and 25,000 low affinity receptors per cell (Kd = 9.2 nM). The kinetic analysis of EGF binding to high affinity receptors was performed with cells pretreated with the monoclonal antibody 2E9, which prevents specifically EGF binding to low affinity receptors. The study of EGF binding to only low affinity receptors was performed with cells pretreated with the phorbol ester phorbol 12-myristate 13-acetate, which induces a conversion of high affinity receptors to low affinity receptors. This kinetic analysis of EGF binding to HeLa cells revealed the presence of three types of receptors. High affinity receptors were found to consist of one receptor type (type I) with a kinetic association constant (kass) of 6.2 x 10(5) M-1.s-1 and a kinetic dissociation constant (kdis) of 3.5 x 10(-4) s-1. The low affinity receptors were found to consist of two kinetic distinguishable sites: type II or fast sites with kass = 3.3 x 10(6) M-1.s-1 and kdis = 8.1 x 10(-3) s-1 and the type III or slow sites with kass = 3.2 x 10(4) M-1.s-1 and kdis = 1.6 x 10(-4) s-1. The regulatory mechanism which may determine the EGF binding characteristics is discussed.  相似文献   

3.
Recombinant eglin c is a potent reversible inhibitor of human pancreatic elastase. At pH 7.4 and 25 degrees C, kass. = 7.3 x 10(5) M-1.s-1, kdiss. = 2.7 x 10(-4) s-1 and Ki = 3.7 x 10(-10) M. Stopped-flow kinetic indicate that the formation of the stable enzyme-inhibitor complex is not preceded by a fast pre-equilibrium complex or that the latter has a dissociation constant greater than 0.3 microM. The elastase-eglin c complex is much less stable at pH 5.0 and 25 degrees C, where kdiss. = 1.1 x 10(-2) s-1 and Ki = 7.3 x 10(-8) M. At pH 7.4 the activation energy for kass. is 43.9 kJ.mol-1 (10.5 kcal.mol-1). The kass. increases between pH 5.0 and 8.0 and remains essentially constant up to pH 9.0. This pH-dependence could not be described by a simple ionization curve. Both alpha 2-macroglobulin and alpha 1-proteinase inhibitor are able to dissociate the elastase-eglin c complex, as evidenced by measurement of the enzymic activity of alpha 2-macroglobulin-bound elastase or by polyacrylamide-gel electrophoresis of mixtures of alpha 1-proteinase inhibitor and elastase-eglin c complex. The rough estimate of kdiss. obtained with the alpha 2-macroglobulin dissociation experiment (1.6 x 10(-4) s-1) was of the same order of magnitude as the constant measured with the progress curve method. Eglin c strongly inhibits the solubilization of human aorta elastin by human pancreatic elastase. The extent of inhibition is the same whether elastase is added to a suspension of elastin and eglin c or whether elastase is preincubated with elastin for 3 min before addition of eglin c. However, the efficiency of the inhibitor sharply decreases if elastase is reacted with elastin for more prolonged periods.  相似文献   

4.
The purpose of the present study was to quantify the binding affinity between Tamm-Horsfall protein (THP) and complement 1q (C1q) using ELISA and a resonant mirror biosensor. In ELISA, immobilized THP was incubated with soluble C1q under both low and physiological ionic-strength conditions. Tamm-Horsfall protein bound C1q with an equilibrium dissociation constant (KD) of 1.9 +/- 0.6 nmol/L in low ionic-strength Tris buffers (20 mmol/L NaCl, pH 7.5) and with a lower affinity (KD of 13.4 +/- 4.7 nmol/L) in physiological-strength Tris buffers (154 mmol/L NaCl, pH 7.5). A resonant mirror biosensor, which monitors binding events in real-time, was used to quantify the KD of this reaction, as well as to estimate the kinetic parameters. In these studies, THP and C1q bound with an association rate constant, kass, of 1.25 x 105 L/mol per s and a dissociation rate constant, kdiss, of 0.002-0.005/s. The calculated KD for the THP/C1q binding in low ionic-strength buffers was higher (averages of 10-15 nmol/L) than that obtained by the ELISA, while physiological ionic-strength buffers still reduced the affinity of this binding by an order of magnitude. In conclusion, THP consistently bound C1q with high affinity using several techniques. At least a portion of this interaction involved electrostatic events, as demonstrated by the influence of ionic strength on the binding affinity.  相似文献   

5.
Heparin affin regulatory peptide (HARP) is a polypeptide belonging to a family of heparin binding growth/differentiation factors. The high affinity of HARP for heparin suggests that this secreted polypeptide should also bind to heparan sulfate proteoglycans derived from cell surface and extracellular matrix defined as extracellular compartments. Using Western blot analysis, we detected HARP bound to heparan sulfate proteoglycans in the extracellular compartments of MDA-MB 231 and MC 3T3-E1 as well as NIH3T3 cells overexpressing HARP protein. Heparitinase treatment of BEL cells inhibited HARP-induced cell proliferation, and the biological activity of HARP in this system was restored by the addition of heparin. We report that heparan sulfate, dermatan sulfate, and to a lesser extent, chondroitin sulfate A, displaced HARP bound to the extracellular compartment. Binding analyses with a biosensor showed that HARP bound heparin with fast association and dissociation kinetics (kass = 1.6 x 10(6) M-1 s-1; kdiss = 0.02 s-1), yielding a Kd value of 13 nM; the interaction between HARP and dermatan sulfate was characterized by slower association kinetics (kass = 0.68 x 10(6) M-1 s-1) and a lower affinity (Kd = 51 nM). Exogenous heparin, heparan sulfate, and dermatan sulfate potentiated the growth-stimulatory activity of HARP, suggesting that corresponding proteoglycans could be involved in the regulation of the mitogenic activity of HARP.  相似文献   

6.
Lipoprotein lipase (LPL) is dependent on apolipoprotein CII (apoCII), a component of plasma lipoproteins, for function in vivo. The hydrophobic fluorescent probe 1,1'-bis(anilino)-4,4'-bis(naphthalene)-8,8'-disulfonate (bis-ANS) was found to be a potent inhibitor of LPL. ApoCII prevented the inhibition by bis-ANS, and was also able to restore the activity of inhibited LPL in a competitive manner, but only with triacylglycerols with acyl chains longer than three carbons. Studies of fluorescence and surface plasmon resonance indicated that LPL has an exposed hydrophobic site for binding of bis-ANS. The high affinity interaction was characterized by an equilibrium constant Kd of 0.10-0.26 microm and by a relatively high on rate constant kass = 2.0 x 10(4) m(-1) s(-1) and a slow off-rate with a dissociation rate constant kdiss = 1.2 x 10(-4) s(-1). The high affinity binding of bis-ANS did not influence interaction of LPL with heparin or with lipid/water interfaces and did not dissociate the active LPL dimer into monomers. Analysis of fragments of LPL after photoincorporation of bis-ANS indicated that the high affinity binding site was located in the middle part of the N-terminal folding domain. We propose that bis-ANS binds to an exposed hydrophobic area that is located close to the active site. This area may be the binding site for individual substrate molecules and also for apoCII.  相似文献   

7.
Summary Based on a three-dimensional molecular model of the variable region of a monoclonal antibody (Ab) TT1, in which the complementarity determining regions (CDRs) associate to form a cavity large enough to accommodate a single molecule of tri-iodothyronine (T3) orthyroxine (T4), we designed TT1 mutants with one amino acid substitution as candidates which have their binding affinity for T4 reduced but retain the same affinity for T3. Each candidate was subsequently tested by site-directed mutagenesis, transient expression in COS cells, and surface plasmon resonance (SPR) analysis for its binding ability for T3- or T4-conjugates with alkaline phosphatase (AP). Of the candidates, the Ab with serine in place of glycine at position 92 of the light chain (L;G92S) and the Ab with alanine in place of leucine at position 47 of the heavy chain (H;L47A) had the association constant (KA = kass / kdiss) for binding to T4-AP decreased by 5-fold, but retained the same KA for T3-AP.  相似文献   

8.
Quartz crystal microbalance (QCM) biosensor integrated in a flow injection analysis (FIA) system was used for the investigation of the specific interaction between immunoglobin G (IgG) and histidine. The histidine was immobilized on the gold electrodes of the piezoelectric crystal using appropriate procedures based on self-assembling of the dithiothreitol (DTT). The specific interaction of the immobilized ligand with IgG in solution was followed as a change in the resonant frequency of the modified crystal and studied in real time without any additional labels. With the mass sensitive biosensor system, the differences in affinity of three different species of IgG: human IgG, goat IgG and mouse IgG were easily distinguished and their respective kinetic rate constants (kass and kdiss) and equilibrium association constants (KA) were determined from the curves of frequency versus time. For the interactions, KA were 2.92 x 10(4), 3.23 x 10(4) and 4.08 x 10(4) M(-1) for human IgG, goat IgG and mouse IgG, respectively.  相似文献   

9.
The binding interaction between amphotericin B and human serum albumin (HSA) has been studied using surface plasmon resonance (SPR) spectroscopy combined with a fluorescence quenching method to confirm the binding kinetic results. In this paper, the SPR method used to study the drug-protein interaction has been described in detail. The association rate constant, dissociation rate constant and the equilibrium association constant of amphotericin B binding to HSA were obtained using this method. To confirm the feasibility of the SPR method, a fluorescence quenching method was performed to obtain the equilibrium constant. In order to obtain more accurate results, experiment design was used to optimize the fluorescence quenching process. The two equilibrium association constants obtained using the two methods were 4.017 x 10(4) M(-1) (SPR) and 3.656 x 10(4) M(-1) (fluorescence quenching method) respectively.  相似文献   

10.
A quartz crystal microbalance (QCM) biosensor integrated into a flow injection analysis (FIA) system was used for the real-time investigation of molecular recognition between a protein and small molecular medicinal agents. Two sulfa-drugs, sulfamethazine (SMZ) and sulfamethoxazole (SMO), were, respectively, immobilized on the gold electrodes of the piezoelectric crystals using appropriate procedures based on self-assembly of the dithiothreitol (DTT). The binding interactions of the two immobilized drug ligands, with various proteins in solution, were followed as changes in the resonant frequency of the modified crystals. Results obtained from this rapid screen analysis clearly indicated that the two drug ligands appeared quite different in this molecular recognition procedure although their structures were similar. SMZ-immobilized sensor showed specific interaction only with IgG, while SMO-immobilized sensor showed negligible specific binding with IgG, but binding with trypsin and chymotrypsin. Further studies on the specific interaction between immobilized SMZ and three different species of IgG--human IgG, goat IgG and mouse IgG were carried out and the marked species-dependent difference was observed. The resultant sensorgrams were rapidly analyzed by using an in-house kinetic analysis software based on genetic algorithm (GA) to derive both the kinetic rate constants (kass and kdiss) and equilibrium association constants (KA) for IgG-SMZ interactions. For the interactions, KA were 5.48 x 10(5), 2.75 x 10(5) and 1.86 x 10(5) M(-1) for human IgG, goat IgG and mouse IgG, respectively. The kinetic data provided further insight into the structural/functional relationships of different IgG on a molecular level.  相似文献   

11.
In vivo significance of kinetic constants of protein proteinase inhibitors   总被引:7,自引:0,他引:7  
We describe the in vivo significance of the kinetic parameters which characterize the interaction between proteinases and protein proteinase inhibitors. Knowledge of the second-order association rate constant kass and in vivo inhibitor concentration allows the calculation of the delay time of inhibition, i.e., the time required for complete inhibition of a proteinase in vivo. The influence of biological substrates on the delay time is also analyzed. The extent of substrate breakdown during the delay time of inhibition may be computed from the various constants describing the proteinase/substrate/inhibitor interactions and the biological concentrations of proteinase and inhibitor. The in vivo partition of a proteinase between two inhibitors may be calculated if the kinetic parameters are known. We define a stability time for enzyme-inhibitor complexes as a minimal time during which the complexes may be considered as stable. This time is related to kdiss the dissociation rate constant of the reversible enzyme-inhibitor complex or to k, the breakdown rate constant of the complex formed with temporary inhibitors. The overall stability of the complex depends upon the ratio between the inhibitor concentration and Ki, the equilibrium dissociation constant of the complex. If this ratio is higher than 1000, a reversible inhibitor behaves like an irreversible one in vivo whatever the enzyme concentration.  相似文献   

12.
Heparin depresses the second-order rate constant kass for the inhibition of neutrophil elastase by alpha 1-proteinase inhibitor. For high and low molecular weight heparin the decrease in kass is 290-fold and 40-fold, respectively. This is due to a tight binding of the polymer to elastase: Kd = 3.3 nM or 89 nM for high or low molecular weight heparin respectively. In contrast heparin increases the rate of inhibition of elastase by mucus proteinase inhibitor. For low molecular weight heparin, there is a 27-fold increase in kass. This is due to a strong binding of the polymer to the inhibitor (Kd = 50 nM) which undergoes a conformational change.  相似文献   

13.
《Cell》1989,57(2):277-285
Two independent cDNA clones encoding the erythropoietin receptor (EPO-R) were isolated from a pXM expression library made from uninduced murine erythroleukemia (MEL) cells. The clones were identified by screening COS cell transfectants for binding and uptake of radioiodinated recombinant human erythropoietin. As inferred from the cDNA sequence, the murine erythropoietin receptor is a 507 amino acid polypeptide with a single membrane-spanning domain. It shows no similarities to known proteins or nucleic acid sequences in the data bases. Although the MEL cell EPO-R has a single affinity with a dissociation constant of approximately 240 pM, the EPO-R cDNA, expressed in COS cells, generates both a high-affinity (30 pM) and a low-affinity (210 pM) receptor.  相似文献   

14.
Surface plasmon resonance (SPR) spectroscopy has emerged as a powerful alternative to conventional biochemistry methods for studying protein-DNA interactions that involve recombinant proteins of known identity. There are, however, limited demonstrations of SPR detection of protein-DNA bindings in crude samples, e.g., cell extracts, where the challenge is to detect and identify specific DNA binding protein(s) among other protein components in a physiological setting. We have developed a two-step antibody approach for an SPR study of estrogen receptor α (ERα)-DNA interactions, in which nuclear extracts prepared from MCF-7 breast cancer cells were used as the source of ERα protein. Following the binding of nuclear extracts to surface-immobilized estrogen response elements, rabbit anti-ERα antibody followed by a secondary antibody (goat anti-rabbit IgG) were applied to recognize the bound ERα and amplify the signals, respectively. Through a series of experiments, we have demonstrated that the magnitude of the binding signals from the secondary antibody reflects the affinity by which ERα binds to different DNA sequences. The detection sensitivity is determined by the amount of nuclear extracts and the concentration of primary antibody used. The sequence specificity of the nuclear ERα measured using the two-step antibody approach is in agreement with that measured for recombinant ERα protein (using receptor binding signals).  相似文献   

15.
BACKGROUND: Recombinant antibody fragments are valuable tools for SPR-based detection of small molecules such as illicit drugs. However, the multiple structural formats of recombinant antibody fragments are largely uncharacterised with respect to their respective performance in SPR sensing. We have expressed a model anti-M3G antibody in both scFv and chimeric Fab formats to examine its sensitivity and binding profiles in a microplate immunoassay format and Biacore. We have further examined the influence of scFv multimerisation, Fab constant region stability and SPR chip surface coating chemistry, on anti-hapten SPR assay development. RESULTS: Under optimised competition ELISA conditions, the anti-M3G scFv was found to have an IC(50) value of 30 ng/ml, while the most stable Fab construct exhibited an IC(50) value of 2.4 ng/ml. In SPR competition assay on an M3G-OVA-coated SPR chip surface, the two constructs again differed in sensitivity, with IC(50) values of 117 and 19 ng/ml for the scFv and Fab, respectively (the scFv also exhibiting poor linearity of response). However, when the SPR chip surface was directly coated with M3G, both antibody constructs exhibited good linearity of response, similar high sensitivity IC(50) values (scFv 30 ng/ml, Fab 14 ng/ml) and high reproducibility (50 effective regenerations for M3G-OVA, 200 for M3G direct). During SPR assay development it was noticed that scFv and Fab constructs gave differing off-rate profiles. Subsequent HPLC, ELISA and electrophoretic analyses then confirmed that a portion of the scFv population multimerises. Bivalent scFv was found to profoundly affect the dissociation curve for scFv in stringent SPR kinetic analyses, leading to a 40-fold difference in calculated off-rate values (Fab off rate 4.7 x 10(-3)S(-1), scFv off rate 1.03 x 10(-2)S(-1)). CONCLUSION: The structural format of recombinant antibody fragments and chip functionalisation methodology can both profoundly affect the function of anti-M3G SPR assay, with direct coating and Fab format proving to be optimal. The confirmation of scFv multimerisation and resulting changes in SPR kinetics profile, in comparison with a Fab, further suggest that caution must be taken in the interpretation of SPR sensorgrams, which are commonly used in the 'affinity ranking' of scFv panels in which the extent of dimerisation in each sample is unknown.  相似文献   

16.
Recent advances in Recombinant antibody technology / Antibody Engineering has given impetus to the genetic manipulation of antibody fragments that has paved the way for better understanding of the structure and functions of immunoglobulins and also has escalated their use in immunotherapy. Bacterial expression system such as Escherichia coli has complemented this technique through the expression of recombinant antibodies. Present communication has attempted to optimize the expression and refolding protocol of single chain fragment variable (ScFv) and single chain antigen binding fragment (ScFab) using E.coli expression system. Efficiency of refolding protocol was validated by structural analysis by CD, native folding by fluorescence and functional analysis by its binding with full length HIV-1 gp120 via SPR. Results show the predominant β–sheet (CD) as secondary structural content and native folding via red shift (tryptophan fluorescence). The single chain fragments have shown good binding with HIV-1 gp120 thus validating the expression and refolding strategy and also reinstating E.coli as model expression system for recombinant antibody engineering. SPR based binding analysis coupled with E.coli based expression and purification will have implication for HIV therapeutics and will set a benchmark for future studies of similar kind.  相似文献   

17.
18.
This paper describes a non-oxidative impairment of the biological function of alpha 1-proteinase inhibitor by cigarette smoke. Aqueous solutions of cigarette smoke are able to decrease the rate constant kass for the inhibition of porcine pancreatic elastase by human plasma alpha 1-proteinase inhibitor. The value of kass decreases linearly with the concentration of smoke (from 2.2 X 10(5) M-1 s-1 to 0.6 X 10(5) M-1 s-1). This effect is not due to an oxidation of the inhibitor. When pancreatic elastase is reacted with elastin in the presence of alpha 1-proteinase inhibitor and cigarette smoke solution, elastolysis occurs at a rate nearly identical to that observed in the absence of inhibitor. This effect is due to a smoke-induced decrease in kass. These observations may serve as a model of biological regulation of proteolysis via a change in the rate constant for a proteinase-proteinase inhibitor association. The influence of cigarette smoke on the inhibition of human neutrophil elastase by alpha 1-proteinase inhibitor could not be studied in detail because the enzyme precipitates in the presence of concentrated smoke solution.  相似文献   

19.
The NahR regulatory protein activates the naphthalene catabolic operon through binding to the Psal promoter in the presence of salicylate. Here, we investigated in vitro binding interaction between NahR and Psal using purified functional recombinant NahR. The T7-tagged NahR was shown to exist as a monomer in solution. Electrophoretic mobility shift assay (EMSA) showed that purified NahR bound to Psal in 3 different forms, whereas surface plasmon resonance (SPR) showed on an SPR chip at ratios ranging from 1:1 (at 0.42 microM NahR) to 8:1 (at 6.8 microM NahR). The binding was slightly inhibited by salicylate, suggesting that salicylate may not be involved in the binding of NahR to the promoter, but rather may be important in the activation of prebound NahR. An examination of the binding kinetics by SPR for the interaction between NahR and Psal revealed that the equilibrium dissociation constant was approximately 2.44 x 10(-6) M and the association and dissociation rates were 7.82 x 10(4) M(-1) s(-1) and 0.191 s(-1), respectively. These results demonstrate for the first time that purified NahR binds as a monomer to Psal and undergoes multimerization. In addition, we present novel data on the kinetics of NahR binding.  相似文献   

20.
Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins’ respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号