首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
BACKGROUND: Foot-and-mouth disease virus (FMDV) causes a severe livestock disease, and the virus is an interesting target for virology and vaccine studies. MATERIALS AND METHODS: Here we evaluated comparatively three different viral antigen-encoding DNA sequences, delivered via two physical means (i.e., gene gun delivery into skin and electroporation delivery into muscle), for naked DNA-mediated vaccination in a mouse system. RESULTS: Both methods gave similar results, demonstrating commonality of the observed DNA vaccine effects. Immunization with a cDNA vector expressing the major viral antigen (VP1) alone routinely failed to induce the production of anti-VP1 or neutralizing antibodies in test mice. As a second approach, the plasmid L-VP1 that produces a transgenic membrane-anchored VP1 protein elicited a strong antibody response, but all test mice failed in the FMDV challenge experiment. In contrast, for mice immunized with the viral capsid precursor protein (P1) cDNA expression vector, both neutralizing antibodies and 80-100% protection in test mice were detected. CONCLUSIONS: This strategy of using the whole capsid precursor protein P1 cDNA for vaccination, intentionally without the use of virus-specific protease or other encoding genes for safety reasons, may thus be employed as a relevant experimental system for induction or upgrading of effective neutralizing antibody response, and as a convenient surrogate test system for DNA vaccination studies of FMDV and presumably other viral diseases.  相似文献   

2.
It has been reported recently that genes encoding antigens of bacterial and viral pathogens can be expressed in plants in a form in which they retain native immunogenic properties. The structural protein VP1 of foot-and-mouth disease virus (FMDV), which has frequently been shown to contain critical epitopes, has been expressed in different vectors and shown to induce virus-neutralizing antibodies and protection in experimental and natural hosts. Here we report the production of transformed plants (Arabidopsis thaliana) expressing VP1. Mice immunized with leaf plant extracts elicited specific antibody responses to synthetic peptides representing amino acid residues 135 to 160 of VP1, to VP1 itself, and to intact FMDV particles. Additionally, all of the immunized mice were protected against challenge with virulent FMDV. To our knowledge, this is the first study showing protection against a viral disease by immunization with an antigen expressed in a transgenic plant.  相似文献   

3.
利用转基因植物作为生物反应器表达重组蛋白,生产外源蛋白质作为动物疫苗是一个很有吸引力的廉价生产系统,它有可能代替生产成本较高的传统疫苗的发酵生产系统。通过口蹄疫病毒VP1结构蛋白基因在转基因植物中的表达,口蹄疫疫苗已在植物中产生。在植物中生产的抗原能够保持其自身的免疫原性。本文简要综述了近十年来用转基因植物作为生物反应器生产口蹄疫疫苗的研究进展、特点及其应用前景 。  相似文献   

4.
We have developed novel DNA fusion vaccines encoding tumor Ags fused to pathogen-derived sequences. This strategy activates linked T cell help and, using fragment C of tetanus toxin, amplification of anti-tumor Ab, CD4(+), and CD8(+) T cell responses is achievable in mice. However, there is concern that simple DNA vaccine injection may produce inadequate responses in larger humans. To overcome this, we tested electroporation as a method to increase the transfection efficiency and immune responses by these tumor vaccines in vivo in mice. Using a DNA vaccine expressing the CTL epitope AH1 from colon carcinoma CT26, we confirmed that effective priming and tumor protection in mice are highly dependent on vaccine dose and volume. However, suboptimal vaccination was rendered effective by electroporation, priming higher levels of AH1-specific CD8(+) T cells able to protect mice from tumor growth. Electroporation during priming with our optimal vaccination protocol did not improve CD8(+) T cell responses. In contrast, electroporation during boosting strikingly improved vaccine performance. The prime/boost strategy was also effective if electroporation was used at both priming and boosting. For Ab induction, DNA vaccination is generally less effective than protein. However, prime/boost with naked DNA followed by electroporation dramatically increased Ab levels. Thus, the priming qualities of DNA fusion vaccines, integrated with the improved Ag expression offered by electroporation, can be combined in a novel homologous prime/boost approach, to generate superior antitumor immune responses. Therefore, boosting may not require viral vectors, but simply a physical change in delivery, facilitating application to the cancer clinic.  相似文献   

5.

Background

Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in Southeast Asia. Vaccination of domestic pigs has been suggested as a “one health” strategy to reduce viral disease transmission to humans. The efficiency of two lentiviral TRIP/JEV vectors expressing the JEV envelope prM and E glycoproteins at eliciting protective humoral response was assessed in a mouse model and piglets.

Methodology/Principal Findings

A gene encoding the envelope proteins prM and E from a genotype 3 JEV strain was inserted into a lentiviral TRIP vector. Two lentiviral vectors TRIP/JEV were generated, each expressing the prM signal peptide followed by the prM protein and the E glycoprotein, the latter being expressed either in its native form or lacking its two C-terminal transmembrane domains. In vitro transduction of cells with the TRIP/JEV vector expressing the native prM and E resulted in the efficient secretion of virus-like particles of Japanese encephalitis virus. Immunization of BALB/c mice with TRIP/JEV vectors resulted in the production of IgGs against Japanese encephalitis virus, and the injection of a second dose one month after the prime injection greatly boosted antibody titers. The TRIP/JEV vectors elicited neutralizing antibodies against JEV strains belonging to genotypes 1, 3, and 5. Immunization of piglets with two doses of the lentiviral vector expressing JEV virus-like particles led to high titers of anti-JEV antibodies, that had efficient neutralizing activity regardless of the JEV genotype tested.

Conclusions/Significance

Immunization of pigs with the lentiviral vector expressing JEV virus-like particles is particularly efficient to prime antigen-specific humoral immunity and trigger neutralizing antibody responses against JEV genotypes 1, 3, and 5. The titers of neutralizing antibodies elicited by the TRIP/JEV vector are sufficient to confer protection in domestic pigs against different genotypes of JEV and this could be of a great utility in endemic regions where more than one genotype is circulating.  相似文献   

6.
Song H  Wang Z  Zheng D  Fang W  Li Y  Liu Y  Niu Z  Qiu B 《Biotechnology letters》2005,27(21):1669-1674
Epitopes of a foot-and-mouth disease virus (FMDV) capsid protein VP1 complex and a chimera of 6×His-tagged cholera toxin B subunit (hCTB) were expressed in Hansenula polymorpha and used together as a mucosal vaccine. Antibody and cytokine responses to VP1–hCTB vaccine and protection against FMDV were evaluated by ELISA and a virus challenge test in mice, respectively. VP1–hCTB directly enhanced the expression of interleukin-5 (IL-5) both in serum and supernatants of cultured spleen cells. After challenging suckling mice with 105 FMDV (=50% lethal dosage per mouse) a greater protection was seen after intraperitoneal and intranasal vaccinations than after oral vaccination. In swine immunized with VP1–hCTB, immune responses were achieved after three administrations, and the vaccine protected swine (80%) when challenged with 106.5 FMDV (=50% infectious dosage per swine). These results demonstrated the possibility of using CTB as a mucosal adjuvant to elicit protective immune responses against FMDV. Houhui Song, Zhiliang Wang and Dongxia Zheng contributed equally to this work.  相似文献   

7.
IFN-α exhibits either direct antiviral effects or distinct immunomodulatory properties, which was identified as a ‘natural immune adjuvant’ for both the innate and the adaptive immune responses. Here we have investigated the effects of IFN-α as an adjuvant on the generation of T follicular helper (Tfh) cells and antigen-specific antibody responses. The data showed that adenoviral vectors co-expressing FMDV VP1 proteins and porcine IFN-α potently enhanced the generation of Tfh cells, the secretion of IL-21 protein and the expression of Bcl-6 mRNA, compared with adenoviral vectors sole expressing VP1 alone. Additionally, IFN-α substantial increased the number of germinal-center (GC) B cells and formation of GCs. Furthermore, IFN-α enhanced the antibody response, as shown by increased production of all IgG and subclasses of IgG1 and IgG2a. Thus, our results revealed the potent adjuvant activity of IFN-α which enhanced the generation of Tfh cells and regulated the humoral immunity by promoting germinal-center reactions and antibody responses.  相似文献   

8.
Since cytotoxic T lymphocytes (CTLs) are critical for controlling human immunodeficiency virus type 1 (HIV-1) replication in infected individuals, candidate HIV-1 vaccines should elicit virus-specific CTL responses. In this report, we study the immune responses elicited in rhesus monkeys by a recombinant poxvirus vaccine and the degree of protection afforded against a pathogenic simian-human immunodeficiency virus SHIV-89.6P challenge. Immunization with recombinant modified vaccinia virus Ankara (MVA) vectors expressing SIVmac239 gag-pol and HIV-1 89.6 env elicited potent Gag-specific CTL responses but no detectable SHIV-specific neutralizing antibody (NAb) responses. Following intravenous SHIV-89.6P challenge, sham-vaccinated monkeys developed low-frequency CTL responses, low-titer NAb responses, rapid loss of CD4+ T lymphocytes, high-setpoint viral RNA levels, and significant clinical disease progression and death in half of the animals by day 168 postchallenge. In contrast, the recombinant MVA-vaccinated monkeys demonstrated high-frequency secondary CTL responses, high-titer secondary SHIV-89.6-specific NAb responses, rapid emergence of SHIV-89.6P-specific NAb responses, partial preservation of CD4+ T lymphocytes, reduced setpoint viral RNA levels, and no evidence of clinical disease or mortality by day 168 postchallenge. There was a statistically significant correlation between levels of vaccine-elicited CTL responses prior to challenge and the control of viremia following challenge. These results demonstrate that immune responses elicited by live recombinant vectors, although unable to provide sterilizing immunity, can control viremia and prevent disease progression following a highly pathogenic AIDS virus challenge.  相似文献   

9.
Wang DM  Zhu JB  Peng M  Zhou P 《Transgenic research》2008,17(6):1163-1170
The expression of antigens in transgenic plants has increasingly been used as an alternative to the classical methodologies for the development of experimental vaccines, and it remains one of the real challenges in this field to use transgenic plant-based vaccines effectively as feedstuff additives. We report herein the development of a new oral immunization system for foot and mouth disease with the structural protein VP1 of the foot and mouth disease virus (FMDV) produced in transgenic Stylosanthes guianensis cv. Reyan II. The transgenic plantlets were identified by polymerase chain reaction (PCR), Southern blotting, and northern blotting; and the production of VP1 protein in transgenic plants was confirmed and quantified by western blotting and enzyme-linked immunosorbent assays (ELISA). Six transformed lines were obtained, and the level of the expressed protein was 0.1–0.5% total soluble protein (TSP). Mice that were orally immunized using studded feedstuff mixed with desiccated powder of the transgenic plants developed a virus-specific immune response to the structural VP1 and intact FMDV particles. To our knowledge, this is the first report of transgenic plants expressing the antigen protein of FMDV as feedstuff additives that has demonstrated the induction of a protective systemic antibody response in animals. These results support the feasibility of producing edible vaccines from transgenic forage plants, and provide proof of the possibility of using plant-based vaccines as feedstuff additives.  相似文献   

10.
A series of four expression plasmids coding for fusion proteins containing foot-and-mouth disease virus (FMDV) sequences was constructed. The fusion proteins contain a large part of beta-galactosidase from Escherichia coli preceded (N-terminal) by 1, 2, 4 or 8 repeats of the antigenic determinant of FMDV consisting of amino acids 137-162 of the capsid polypeptide VP1. All four fusion proteins were efficiently produced in E. coli host bacteria. Immunization of rabbits resulted in FMDV-specific, neutralizing antibodies, the response being dependent on the number of repeats. With enzyme-linked immunosorbent-assay techniques it was shown that the FMDV antigenic determinants are exposed on the surface of the fusion proteins under non-denaturing conditions.  相似文献   

11.
将构建的携带FMDV衣壳蛋白P1-2A和蛋白酶3C编码基因的重组鸡痘病毒活载体疫苗vUTAL3CP1以及编码FMDVP1-2A基因和猪IL-18基因的重组DNA疫苗pVIRIL18P1,分别以单独和混合的方式给豚鼠进行2次免疫,然后测定FMDV特异性结合抗体、中和抗体和T淋巴细胞增殖反应,并用250ID50的FMDV进行攻击,观察其保护效果。结果表明这2种基因工程疫苗均能诱导豚鼠产生特异性的体液免疫及细胞免疫应答。其中以vUTAL3CP1两次免疫组的效果最好,其诱导的抗体水平已接近于常规灭活疫苗,而细胞免疫水平则比后者高得多。攻击保护结果表明该组完全保护率可达3/4,而另外两组也具有一定保护效果。上述研究结果为进一步进行大动物免疫攻毒试验,并最终筛选出最佳疫苗和免疫程序奠定了基础。  相似文献   

12.
BACKGROUND: Lentiviral vectors, due to their capacity to transduce non-dividing cells, have become precious and worldwide used gene transfer systems. Their ability to efficiently and stably transduce dendritic cells (DCs) has led to their successful use as vaccination vectors for eliciting strong, specific and protective cellular immune responses mostly in anti-tumoral but also in anti-viral applications. However, the ability of lentiviral vectors to elicit an antibody-based protective immunity has, to date, not been evaluated. In the present study, we evaluated the potential of a lentiviral vector-based vaccine to elicit humoral immunity against West Nile virus (WNV). WNV is a mosquito-borne flavivirus that emerged in North America and causes encephalitis in humans, birds and horses. Neutralizing anti-WNV antibodies have been shown to be crucial for protection against WNV encephalitis. METHODS: The ability of lentiviral vector TRIP/sE(WNV), expressing the secreted soluble form of the envelope E-glycoprotein (sE(WNV)) from the highly virulent IS-98-ST1 strain of WNV, to induce a specific humoral response and protection against WNV infection was assessed in a mouse model of WNV encephalitis. RESULTS: Remarkably, a single immunization with a minute dose of TRIP/sE(WNV) was efficient at eliciting a long-lasting, protective and sterilizing humoral immunity, only 1 week after priming. CONCLUSIONS: This study broadens the applicability of lentiviral vectors as efficient non-replicating vaccines against pathogens for which a neutralizing humoral response is one active arm of the protective immunity. The TRIP/sE(WNV) lentiviral vector appears to be a promising tool for veterinary vaccination against zoonotic WNV.  相似文献   

13.
To develop a safe and efficient recombinant subunit vaccine to foot-and-mouth disease virus(FMDV)type Asia 1 in sheep,a tandem repeated multiple-epitope gene consisting of residues 137-160 and 197-211 of the VP1 gene of FMDV was designed and artificially synthesized.The biologically functional molecule,the ovine IgG heavy constant region(oIgG)as a protein carrier was introduced for design of the multiple-epitope recombinant vaccine and recombinant expression plasmids pET-30a-RE and pET-30a-RE-oIgG were successfully constructed.The recombinant proteins,RE and RE-oIgG,were expressed as a formation of inclusion bodies in E.coli.The immune potential of this vaccine regime in guinea pigs and sheep was evaluated.The results showed that IgG could significantly enhance the immune potential of antigenic epitopes.The recombinant protein RE-oIgG could not only elicit the high levels of neutralizing antibodies and lymphocytes proliferation responses in the vaccinated guinea pigs,but confer complete protection in guinea pigs against virus challenge.Although the recombinant protein RE could not confer protection in the vaccinated animals,it could delay the appearance of the clinical signs and reduce the severity of disease.Inspiringly,the titers of anti-FMDV neutralizing antibodies elicited in sheep vaccinated with RE-oIgG was significantly higher than that for the RE vaccination.Therefore,we speculated that this vaccine formulation may be a promising strategy for designing a novel vaccine against FMDV in the future.  相似文献   

14.
The expression of infectious bursal disease virus (IBDV) host-protective immunogen VP2 protein in rice seeds, its immunogenicity and protective capability in chickens were investigated. The VP2 cDNA of IBDV strain ZJ2000 was cloned downstream of the Gt1 promoter of the rice glutelin GluA-2 gene in the binary expression vector, pCambia1301-Gt1. Agrobacterium tumefaciens containing the recombinant vector was used to transform rice embryogenic calli, and 121 transgenic lines were obtained and grown to maturity in a greenhouse. The expression level of VP2 protein in transgenic rice seeds varied from 0.678% to 4.521% µg/mg of the total soluble seed protein. Specific pathogen-free chickens orally vaccinated with transgenic rice seeds expressing VP2 protein produced neutralizing antibodies against IBDV and were protected when challenged with a highly virulent IBDV strain, BC6/85. These results demonstrate that transgenic rice seeds expressing IBDV VP2 can be used as an effective, safe and inexpensive vaccine against IBDV.  相似文献   

15.
Human rhinovirus (RV) infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2) capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.  相似文献   

16.
The three cytoplasmic polyadenylated mRNA's which separately encode the three capsid proteins (VP1, VP2, and VP3) of polyoma virus were mapped on the viral genome by one- and two-dimensional gel electrophoreses of nuclease S1-resistant RNA-DNA hybrids. The mRNA's, which we designated mVP1, mVP2, and mVP3 to indicate the coding functions deduced from the cosedimentation of the RNAs and the messenger activities, comprise an overlapping set of 3'-coterminal molecules which also share a heterogeneous family of noncoding 5'-terminal regions (Flavell et al., Cell 16:357--371, 1979; Legon et al., Cell 16:373--388, 1979). The three species differ in the length of the 3' colinear coding region which is spliced to the 5' leader sequences. The common polyadenylated 3' end maps at map unit 25.3. The 5' ends of the colinear bodies of mVP1, mVP3, and mVP2 map at 48.5, 59.5, and 66.5 map units, respectively. An examination of the polyoma virus DNA sequence (Arrand et al., J. Virol. 33:606--618, 1980) in the vicinities of splicing sites approximated by the S1 gel mapping data for sequences common to the ends of known intervening sequences allowed prediction of the precise splice points in polyoma virus late mRNA's. In all three cases, the leader sequences are joined to the mRNA bodies at least 48 nucleotides before the translational initiation codon used in each particular messenger. The start signal which functions in each mRNA is the first AUG (or GUG) triplet after the splice junction.  相似文献   

17.
VP1, a pivotal capsid protein encoded by the foot-and-mouth disease virus (FMDV), plays an important role in receptor-mediated attachment and humoral immune responses. Previous studies show that amino acid changes in the VP1 protein of cell culture-adapted strains of FMDV alter the properties of the virus. In addition, FMDV VP1 modulates host IFN signal transduction. Here, we examined the ability of cell culture-adapted FMDV VP1(83K) and wild-type FMDV VP1(83E) to evade host immunity by blocking mitochondrial antiviral signaling protein (MAVS)/TNF Receptor Associated Factor 3 (TRAF3) mediated cellular innate responses. Wild-type FMDV VP1(83E) interacted specifically with C-terminal TRAF3-binding site within MAVS and this interaction inhibited binding of TRAF3 to MAVS, thereby suppressing interferon-mediated responses. This was not observed for cell culture-adapted FMDV VP1(83K). Finally, chimeric FMDV harboring VP1(83K) showed very low pathogenicity in pigs. Collectively, these data highlight a critical role of VP1 with respect to suppression of type-I IFN pathway and attenuation of FMDV by the E83K mutation in VP1.  相似文献   

18.
Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination.  相似文献   

19.
20.
We investigated the role of the immune system in protecting against virus-induced demyelination by generating lines of transgenic B10 (H-2(b)) congenic mice expressing three independent contiguous coding regions of the Theiler's murine encephalomyelitis virus (TMEV) under the control of a class I major histocompatibility complex (MHC) promoter. TMEV infection of normally resistant B10 mice results in virus clearance and development of inflammatory demyelination in the spinal cord. Transgenic expression of the viral capsid genes resulted in inactivation of virus-specific CD8(+) T lymphocytes (class I MHC immune function) directed against the relevant peptides, but it did not affect production of virus capsid-specific antibodies or lymphocyte proliferation to the virus antigen (class II MHC immune functions). Following intracerebral infection with TMEV, all three lines of mice survived the acute encephalitis but transgenic mice expressing VP1 (or the cluster of virus capsid proteins [VP4, VP2, and VP3] mapping to the left of VP1 in the TMEV genome) developed virus persistence and subsequent demyelination in spinal cord white matter. Transgenic mice expressing noncapsid proteins mapping to the right of VP1 (2A, 2B, 2C, 3A, 3B, 3C, and 3D) cleared the virus and did not develop demyelination. These results are consistent with the hypothesis that virus capsid gene products of TMEV stimulate class I-restricted CD8(+) T-cell immune responses, which are important for virus clearance and for protection against myelin destruction. Presented within the context of self-antigens, inactivation of these cells by ubiquitous expression of relevant virus capsid peptides partially inhibited resistance to virus-induced demyelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号