首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
酪氨酸蛋白激酶和蛋白激酶C对N—乙酰氨基葡萄糖转?…   总被引:1,自引:0,他引:1  
在人肝癌细胞7721中研究了酪氨酸蛋白激酶(TPK)和蛋白激酶C(PKC)的激活剂[分别为表皮生长因子(EGF)和佛波酯(PMA)]和各种蛋白激酶抑制剂对N-乙酰氨基葡萄糖转移酶V(GnT-V)活力的影响,以探讨TPK和PKC对GnT-V的调节。结果发现,EGF或PMA处理细胞48h后,GnT-V的活力明显增高;蛋白激酶的非特异性抑制剂槲皮素和染料木黄酮在抑制TPK和PKC的同时,抑制GnT-V的  相似文献   

2.
人肝癌细胞株7721细胞的N-乙酰氨基葡萄糖转移酶Ⅲ(GnTⅢ)活性受Ser/Thr蛋白激酶的两种抑制剂quercetin和三氟吡嗪(TFP).蛋白激酶C(PKC)的两种特异性抑制剂D-鞘氨醇和staurosporine的抑制。用PMA处理细胞舌,GnTⅢ活力随膜性PKC(m-PKC)活力而平行变化,但与胞液PKC活力的变化无关。Quercetin、D-鞘氨醇和staurosporine还能够阻断PMA对GnTⅢ的激活。Quercetin、staurosporine对m-PKC和GnTⅢ的抑制作用基本上与它们的应用浓度成正比关系。当人及大鼠肾脏的粗GnT制剂分别用碱性磷酸酶切除磷酸基后,GDTⅢ的活力明显下降。这些结果表明m-PKC可能通过蛋白质的Ser/Thr残基上磷酸化和去磷酸化作用直接或间接地调节GnTⅢ。  相似文献   

3.
蛋白激酶和D—鞘氨醇对人肝癌细胞磷脂酶D活力的调节   总被引:3,自引:0,他引:3  
为了研究蛋白激酶C(PKC)和酪氨酸激酶(TPK)对7721人肝癌细胞中磷脂酰胆碱(PC0专一性磷脂酶D(PLD)的调节,测定了各种PKC和TPK抑制剂和PKC抗体对该细胞中PLD活力的影响。结果发现:4种PKC抑制剂Chelerythrine,H-7,CalphostinC和星形孢菌素(Staurosporine),以及2种TPK抑制剂Tyrphostin46和木质异黄酮(Genistein)f  相似文献   

4.
佛波酯引起蛋白激酶C下降调节的专一性   总被引:8,自引:0,他引:8  
探讨了佛波酯(PMA)对蛋白激酶的下降调节是否有激酶专一性及亚型专一性.用组蛋白H1作为蛋白激酶C(PKC)和蛋白激酶A(PKA)的受体底物,加入PKC和PKA的特异性激活剂区分PKC和PKA,用聚谷酪(41)为酪氨酸蛋白激酶(TPK)的专一性受体底物,以32P-ATP为32P共同供体底物测定三种蛋白激酶的活力,并用免疫组化法测定PKC亚型.结果发现PMA对人7721肝癌细胞只引起PKC而不引起PKA和TPK的下降调节,PKC的非特异性抑制剂槲皮素和特异性抑制剂D-鞘氨醇能大部分取消PMA对PKC的下降调节,但TPK抑制剂genestein则没有阻断下降调节的作用.用HL-60细胞还证明PMA只对含量丰富的PKCα和PKCβⅡ亚型而不对含量很少的PKCβⅠ亚型发生下降调节.上述结果说明PMA对蛋白激酶的下降调节有激酶和亚型专一性.  相似文献   

5.
李田昌  佟利家 《生理学报》1996,48(4):337-342
内皮素(endothelin,ET)是已知的体内活性最强的缩血管物质,其缩血管作用由G蛋白偶联受体所介导。但ET强大的促血管平滑肌细胞(VSMC)增生效应的机理尚未完全阐明。本研究选用培养的兔胸主动脉VSMC,探讨丝裂素活化蛋白激酶(MAPK)在ET促细胞增生中的作用。结果表明:ET-1呈时间和浓度依赖性地促进细胞摄取 ̄3H-TdR和激活MAPK,此作用可被蛋白激酶C(proteinkinaseC,PKC)抑制剂Staurosporine(STP),H-7和ET_A受体拮抗剂BQ123所抑制,但不被酪氨酸激酶抑制剂HerbimycinA(Herb)所抑制,用PKC激动剂PMA(Phorbolmyristateacetate)预处理VSMC,使其PKC活性下调,可显著减弱ET-1对MAPK的激活能力。本结果提示:(1)MAPK参与ET-1所致的VSMC增生;(2)ET-1促细胞增生与激活MAPK的作用是由ET_A受体和PKC介导的。  相似文献   

6.
表皮生长因子(EGF)、转化生长因子-α(TGFα)、表皮生长因子受体(EGFR)和蛋白激酶C(PKC)与细胞生长、增殖分化调节和细胞癌变有密切关系。作者用免疫组织化学方法检测了细支气管肺泡细胞增生(BAH)和细支气管肺泡细胞癌(BAC)的EGF、TGFα、EGFR和PKC表达。结果表明:BAC中的EGF、TGFα阳性率和阳性强度以及EGFR、PKC阳性强度均明显高于BAH。BAH的重度不典型增生病例,其EGF、TGFα、EGFR和PKC均呈高表达。TGFα、EGFR和PKC三者在BAC和BAH中的表达存在明显相关性。提示:TGFα及其受体EGFR和PKC是细支气管肺泡细胞增生、恶性转化和肺泡癌细胞失控生长的重要因素。  相似文献   

7.
以大鼠成骨肉瘤细胞(UMR106)为模型,研究了表皮生长因子(EGF)对其受体酪氨酸蛋白激酶(TPK)的调节作用。以本实验室从植物中提取纯化的二萜类活性物质(RFP134)为诱导分化剂,观察了RFP134对UMR106细胞EGF受体TPK的活性和磷酸化作用的影响,并与RA和RFP134+RA处理细胞做了比较,结果显示EGF与其受体结合后能激活TPK,使TPK活性增加2倍.RFP134,RA,RFP134+RA处理细胞后,分别降低EGF诱导的受体TPK活性50%,43%,55%,降低磷酸化TPK含量55%,36%,53%。从结果中发现无EGF刺激的细胞也具有受体TPK磷酸化作用,用RFP134,RA,RFP134+RA处理细胞,分别降低受体磷酸化TPK含量59%,40%,57%,而且我们发现用EGF诱导的细胞受体TPK含量高于无EGF作用的细胞.提示UMR106细胞本身可能具有受体TPK活性,能够引起细胞受体自动磷酸化,EGF刺激后TPK的磷酸化作用增强,可见RFP134对EGF诱导的TPK磷酸化和无EGF诱导的受体自动磷酸化都具有明显的抑制作用,(并强于RA)这可能与在第二信使水平上阻抑PTPK活性密切相关  相似文献   

8.
Luo ZQ  Sun XH  Qin XQ 《生理学报》1999,51(3):241-245
应用反义技术探讨c-fos基因ET-1调控肺泡Ⅱ型细胞(ATⅡ)表面活性物质(PS)合成的胞内信号转导中的作用,结果显示:(1)内皮素-1(ET-1)可提高ATⅡ细胞的^3H-胆碱掺入。(2)蛋白激酶C(PKC)激活剂PMA可使ATⅡ细胞的^3H-胆碱掺入量增加,PKC抑制剂H7可抑制ET-1的促PS合成效应。(3)ET-1和PMA可显著提高Fos蛋白表达量,H7和c-fos反义寡核苷酸(ODN)  相似文献   

9.
PKC、PKA和TPK在血小板激活中的作用   总被引:1,自引:0,他引:1  
利用~(32)P-NaH_2PO_4标记猪血小板,然后以PMA、凝血酶、PGE_1、腺苷等处理,结果表明,随着PMA激活PKC,血小板发生聚集。35μmol/LPGE_1或1mmol/LdbcAMP不能抑制50nmol/LPMA诱导的血小板聚集,腺苷却能抑制PMA诱导的血小板聚集(EC_(50)=0.1mmol/L),db-cAMP、腺苷都不能抑制100nmol/LPMA诱导的40kD蛋白磷酸化。PKA激活不能抑制PMA激活的PKC。在PMA、凝血酶激活的血小板中,PKC、TPK都发生激活,40kD底物既是PKC的底物又是TPK的底物,PKC和TPK在血小板聚集中起着重要的调节作用。  相似文献   

10.
用我室建立的HPLC法测定分化诱导剂,视黄酸(RA)和双丁酰环磷酸腺苷(db-cAMP),及增殖促进剂,佛波醇肉桂酸乙酸酯(PMA)对SMMC-7721人肝癌细胞N-乙酰氨基葡萄糖转移酶V和III(GnT-V,GnT-III)的影响,发现对照细胞在培养5天后GnT-V略见升高。经RA和db-cAMP处理后,可通天降低GnT-V的活力,但不论对照或处理细胞均未测出GnT-III的活力。PMA可增高GnT-V和GnT-III的活力,对GnT-III的增加较GuT-V发生较早亦较强。以上结果和我室报道的RA或db-cAMP减少而PMA增加SMMC-7721细胞表面N-糖链的天线数相符,也和大鼠化学诱发肝癌中GnT-III和V的增高相一致。  相似文献   

11.
Abstract: The rod photoreceptors of teleost retinas elongate in the light. To characterize the role of protein kinases in elongation, pharmacological studies were carried out with rod fragments consisting of the motile inner segment and photosensory outer segment (RIS-ROS). Isolated RIS-ROS were cultured in the presence of membrane-permeant inhibitors that exhibit selective activity toward specific serine/threonine protein kinases. We report that three distinct classes of protein kinase inhibitors stimulated elongation in darkness: (1) cyclic AMP-dependent protein kinase (PKA)-selective inhibitors (H-89 and KT5720), (2) a protein kinase C (PKC)-selective inhibitor (GF 109203X) that affects most PKC isoforms, and (3) a kinase inhibitor (H-85) that does not affect PKC and PKA in vitro. Other kinase inhibitors tested neither stimulated elongation in darkness nor inhibited light-induced elongation; these include the myosin light chain kinase inhibitors ML-7 and ML-9, the calcium-calmodulin kinase II inhibitor KN-62, and inhibitors or activators of diacylglycerol-dependent PKCs (sphingosine, calphostin C, chelerythrine, and phorbol esters). The myosin light chain kinase inhibitors as well as the PKA and PKC inhibitors H-89 and GF 109203X all enhanced light-induced elongation. These observations suggest that light-induced RIS-ROS elongation is inhibited by both PKA and an unidentified kinase or kinases, possibly a diacylglycerol-independent form of PKC.  相似文献   

12.
在报道视黄酸(RA)是人肝癌细胞株SMMC-7721分化诱导剂的基础上,本文继续报道8-溴-环磷酸腺苷对该细胞也有分化诱导作用,两者都抑制细胞的增殖,降低γ-谷氨酰转肽酶(γ-GT)比活力和升高(ALP)碱性磷酸酶的比活力。在10μmol/LRA和0.5mmol/L-8-Br-cAMP处理细胞1、3、5天后,胞液和膜性组分中的酪氨酸蛋白激酶(TPK)的比活力均降低,其中RA对胞液TPK的作用在早期较明显,约降低30%,而对膜性TPK的影响则随培养天数而逐渐增加,至第5天下降达50%以上。8Br-cAMP则相反,对胞浆TPK的抑制主要发生在3天以后;约抑制43—53%,而对膜性组分则抑制率逐日降低,在第一天较为明显。因TPK是一个细胞增殖恶变的标志,故RA和8-溴-cAMP对TPK的抑制进一步证明这两种分化诱导剂对SMMC-7721细胞的逆转作用。  相似文献   

13.
To understand how vascular endothelial growth factor (VEGF) production is activated in malignant glioma cells, we employed protein tyrosine kinase (PTK) and protein kinase C (PKC) inhibitors to evaluate the extent to which these protein kinases were involved in signal transduction leading to VEGF production. PTK inhibitors blocked glioma proliferation and epidermal growth factor (EGF)-induced VEGF secretion, while H-7, a PKC inhibitor, inhibited both EGF-induced and baseline VEGF secretion. Phorbol 12-myristate 13-acetate (PMA), a non-specific activator of PKC, induced VEGF secretion by glioma cells, which was enhanced by calcium ionophore A23187, but completely blocked after prolonged treatment of cells with 1 microM PMA, by presumably depleting PKC. All inhibitors (genistein, AG18, AG213, H-7, prolonged PMA treatment) which inhibited EGF-induced VEGF secretion in glioma cells also inhibited cell proliferation at similar concentrations. However, PKC inhibition only blocked 50% of the VEGF secretion induced by growth factors (EGF, platelet-derived growth factor-BB, or basic fibroblast growth factor). This reserve capacity could be ascribed to a PKC-independent effect, or to PKC isoenzymes not down-regulated by PMA. These findings extend our previous assertion that VEGF secretion is tightly coupled with proliferation by suggesting that activation of convergent growth factor signaling pathways will lead to increased glioma VEGF secretion. Understanding of signal transduction of growth factor-induced VEGF secretion should provide a rational basis for the development of novel strategies for therapy.  相似文献   

14.
Abstract: Both the Ca2+/phospholipid-dependent protein kinases (protein kinases C, PKCs) and mitogen-activated protein kinases (MAPKs) have been implicated as participants in the secretory response of bovine adrenomedullary chromaffin cells. To investigate a possible role for these kinases in exocytosis and the relationship of these kinases to one another, intact chromaffin cells were treated with agents that inhibited each of the kinases and analyzed for catecholamine release and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)/MAPK activation after stimulation with secretagogues of differential efficacy. Of the three secretagogues tested, inactivation of PKCs by long-term phorbol 12-myristate 13-acetate (PMA) treatment or incubation with GF109203X had the greatest inhibitory effect on nicotine-induced catecholamine release and MEK/MAPK activation, a moderate effect on KCl-induced events, and little, if any, effect on Ca2+ ionophore-elicited exocytosis and MEK/MAPK activation. These results indicate that PKC plays a significant role in events induced by the optimal secretagogue nicotine and a lesser role in exocytosis elicited by the suboptimal secretagogues KCl and Ca2+ ionophore. Treatment of cells with the MEK-activation inhibitor PD098059 completely inhibited MEK/MAPK activation (IC50 1–5 µM) and partially inhibited catecholamine release induced by all secretagogues. However, PD098059 was more effective at inhibiting exocytosis induced by suboptimal secretagogues (IC50~10 µM) than that induced by nicotine (IC50~30 µM). These results suggest a more prominent role for MEK/MAPK in basic secretory events activated by suboptimal secretagogues than in those activated by the optimal secretagogue nicotine. However, PD098059 also partially blocked secretion potentiated by short-term PMA treatment, suggesting that PKC can function in part by signaling through MEK/MAPK to enhance secretion. Taken together, these results provide evidence for the preferential involvement of MEK/MAPK in basic secretory events activated by the suboptimal secretagogues KCl and Ca2+ ionophore and the participation of both PKC and MEK/MAPK in optimal secretion induced by nicotine.  相似文献   

15.
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A.  相似文献   

16.
Abstract: We examined protein kinase C (PKC) activity in Ca2+-dependent PKC (Ca2+-dependent PKC activities) and Ca2+-independent PKC (Ca2+-independent PKC activities) assay conditions in brains from Alzheimer's disease (AD) patients and age-matched controls. In cytosolic and membranous fractions, Ca2+-dependent and Ca2+-independent PKC activities were significantly lower in AD brain than in control brain. In particular, reduction of Ca2+-independent PKC activity in the membranous fraction of AD brain was most enhanced when cardiolipin, the optimal stimulator of PKC-ε, was used in the assay; whereas Ca2+-independent PKC activity stimulated by phosphatidylinositol, the optimal stimulator of PKC-δ, was not significantly reduced in AD. Further studies on the protein levels of Ca2+-independent PKC-δ, PKC-ε, and PKC-ζ in AD brain revealed reduction of the PKC-ε level in both cytosolic and membranous fractions, although PKC-δ and PKC-ζ levels were not changed. These findings indicated that Ca2+-dependent and Ca2+-independent PKC are changed in AD, and that among Ca2+-independent PKC isozymes, the alteration of PKC-ε is a specific event in AD brain, suggesting its crucial role in AD pathophysiology.  相似文献   

17.
Abstract: The relationship between extracellular signal-regulated protein kinase (ERK) activation and process extension in cultured bovine oligodendrocytes (OLGs) was investigated. Process extension was induced through the exposure of cultured OLGs to phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC), for various intervals. During the isolation of these OLGs from bovine brain, the original processes were lost. Therefore, any reinitiation of process extension via PMA stimulation was easily discernible through morphological monitoring. It was found that exposure of OLGs to PMA for 10 min was enough to induce OLG process extension 24–72 h later. Furthermore, this extension was still evident at least 1 week after the initial PMA stimulation, indicating that OLGs do not need continuous PKC activation to sustain process extension. Control and PMA-stimulated OLGs were also subjected to immunocytochemistry using an anti-ERK antibody selective for the mitogen-activated protein kinases p42 Erk2 (ERK2) and p44 Erk1 (ERK1) isoforms. ERK immunoreactivity in the nucleus was evident after PMA stimulation of OLGs but not in control OLGs. In parallel experiments, the control and PMA-stimulated OLGs were purified by Mono Q fractionation and subjected to ERK phosphotransferase assays using [γ-32P]ATP and either myelin basic protein (MBP) or a synthetic peptide substrate based on the Thr97 phosphorylation site in MBP. These assays indicated that in PMA-treated OLGs, ERK activation was at least 12-fold higher than in control OLGs. Anti-ERK and anti-phosphotyrosine western blots of the assay fractions verified an enhanced phosphorylation of ERK1 and ERK2 in PMA-treated fractions relative to control fractions. When OLGs were pretreated for 15 min with the ERK kinase (MEK) inhibitor PD 098059 before PMA stimulation, they exhibited a 67% decrease in ERK activation as compared with cells treated with PMA alone. Furthermore, these MEK inhibitor-pretreated cells were still viable but showed no process extensions up to 1 week later. Therefore, we propose that a threshold level of ERK activity is required for the initiation of OLG process extension.  相似文献   

18.
Effects of protein kinase C on protein stability and activity of rat AANAT were investigated in vitro and in vivo. When COS-7 cells transfected with AANAT cDNA were treated with phorbol 12-myristate 13-acetate (PMA), both the activity and protein level of AANAT were increased. These effects of PMA were blocked by GF109203X, a specific inhibitor of PKC. Moreover, PMA increased the phosphorylation of AANAT and induced the formation of AANAT/14-3-3zeta complex. PMA did not affect the basal level of cAMP and did not involve the potentiation of the cAMP production by forskolin, indicating that PKC-dependent activation of adenylyl cyclase was excluded in transfected COS-7 cells. To identify which amino acids were phosphorylated by PKC, several conserved Thr and Ser residues in AANAT were targeted for site-directed mutagenesis. Mutations of Thr29 and Ser203 prevented the increase of enzymatic activity and protein level mediated by PMA. To explore the nature of AANAT phosphorylation, purified rat AANAT was subjected to in vitro PKC kinase assay. PKC directly phosphorylated the rat recombinant AANAT. The phosphopeptides identified by mass spectrometric analysis, and western blotting indicated that Thr29 was one of target sites for PKC. To confirm the effects of the physiological activation of PKC, rat pineal glands were treated with alpha(1)-adrenergic specific agonist phenylephrine. Phenylephrine caused the phosphorylation of endogenous AANAT whereas GF109203X or prazosin, an alpha(1)-adrenergic-specific antagonist, markedly inhibited it. These results suggest that AANAT was phosphorylated at Thr29 by PKC activation through the alpha(1)-adrenergic receptor in rat pineal glands, and that its phosphorylation might contribute to the stability and the activity of AANAT.  相似文献   

19.
The proteomic analysis has showed that red cell membrane contains several kinases and phosphatases. Therefore the aim of this study was to investigate the role of protein kinases of human red cell membrane in deformability and aggregation changes. Exposure of red blood cells (RBCs) to some chemical compounds led to change in the RBC microrheological properties. When forskolin (10 microM), an adenylyl cyclase (AC) and a protein kinase A (PKA) stimulator was added to RBC suspension, the RBC deformability (RBCD) was increased by 20% (p < 0.05). Somewhat more significant deformability rise appeared after RBC incubation with dB-AMP (by 26%; p < 0.01). Red cell aggregation (RBCA) was significantly decreased under these conditions (p < 0.01). Markedly less changes of deformability was found after RBC incubation with protein kinase stimulator C (PKC)--phorbol 12-myristate 13-acetate (PMA). This drug reduced red cell aggregation only slightly. It was inhibited red cell tyrosine phosphotase activity by N-vanadat and was obtained a significant RBCD rise and RBCA lowering. The similar effect was found when cells were incubated with cisplatin as a tyrosine protein kinase (TPK) activator. It is important to note that a selective TPK inhibitor--lavendustin eliminated the above mention effects. On the whole the total data clearly show that the red cell aggregation and deformation changes were connected with an activation of the different intracellular signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号