首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An isolated bacterium that converted unsaturated fatty acids to hydroxy fatty acids was identified as Stenotrophomonas nitritireducens by API analysis, cellular fatty acids compositions, sequencing the full 16S ribosomal ribonucleic acid, and evaluating its nitrite reduction ability. S. nitritireducens has unique regio-specificity for C16 and C18 cis-9 unsaturated fatty acids. These fatty acids are converted to their 10-hydroxy fatty acids without detectable byproducts. Among the cis-9-unsaturated fatty acids, S. nitritireducens showed the highest specificity for linoleic acid. The cells converted 20 mM linoleic acid to 13.5 mM 10-hydroxy-12(Z)-octadecenoic acid at 30°C and pH 7.5 with a yield of 67.5% (mol/mol).  相似文献   

2.
The influence of growth temperature, media composition and cell age on the chemical composition of Bacillus stearothermophilus strain AN 002 has been determined. The total cellular protein decreased and the free amino acid content increased with growth temperature, in both exponential and stationary growth phase. The protein and free amino acid contents of cells were higher in the stationary phase than in the exponential phase, irrespective of growth temperature and media composition. The RNA content was only reduced in cells grown at 55° C. No significant variations were observed in the DNA and carbohydrate contents with respect to growth temperature and cell age. The total lipid and fatty acid compositions on the other hand varied as a function of growth temperature, cell age and media composition. Differences in the relative concentrations of even, odd and branched chain fatty acids were noticed. Novariation was observed in the antiiso and unsaturated fatty acids with respect to growth temperature. The unique variations in the fatty acid composition and total lipids at the growth temperature of 50° C and their variations in the stationary growth phase seem to be characteristic for B. stearothermophilus AN 002.  相似文献   

3.
A psychrophilic bacterium, Pseudomonas syringae (Lz4W) from Antarctica, was used as a model system to establish a correlation, if any, between thermal adaptation, trans-fatty acid content and membrane fluidity. In addition, attempts were made to clone and sequence the cti gene of P. syringae (Lz4W) so as to establish its characteristics with respect to the cti of other Pseudomonas spp. and also to in vitro mutagenize the cti gene so as to generate a cti null mutant. The bacterium showed increased proportion of saturated and trans-monounsaturated fatty acids when grown at 28°C compared to cells grown at 5°C, and the membrane fluidity decreased with growth temperature. In the mutant, the trans-fatty acid was not synthesized, and the membrane fluidity also decreased with growth temperature, but the decrease was not to the extent that was observed in the wild-type cells. Thus, it would appear that synthesis of trans-fatty acid and modulation of membrane fluidity to levels comparable to the wild-type cells is essential for growth at higher temperatures since the mutant exhibits growth arrest at 28°C. In fact, the cti null mutant-complemented strain of P. syringae (Lz4W-C30b) that was capable of synthesizing the trans-fatty acid was indeed capable of growth at 28°C, thus confirming the above contention. The cti gene of P. syringae (Lz4W) that was cloned and sequenced exhibited high sequence identity with the cti of other Pseudomonas spp. and exhibited all the conserved features.  相似文献   

4.
The effects of changes in fatty acid composition of the cell membrane on different biological functions ofSalmonella typhimurium have been studied with the help of a temperature sensitive fatty acid auxotroph which cannot synthesise unsaturated fatty acids at high temperature. On being shifted to nonpermissive temperature the cells continue growing for another one and half to two generations. The rates of protein and DNA syntheses run parallel to the growth rate but the rate of RNA synthesis is reduced. Further, there is a gradual reduction in the rate of transport of exogenous uridine and thymidine into the soluble pool. The transport process can be restored by supplementing the growth medium with cis-unsaturated fatty acids but not trans-unsaturated ones although the growth of the cells is resumed by supplementation with eithercis or trans-unsaturated fatty acids. However, supplementation withtrans, trans-unsaturated fatty acids leads to only partial recovery of the transport process. The rate of oxygen uptake is also affected in cells grown in the presence of thetrans-unsaturated fatty acids, elaidic acid and palmitelaidic acid. Analysis of cells grown under different fatty acid supplementation indicate that fatty acid composition of the cell membrane, especially the ratio of unsaturated to saturated fatty acids varies with temperature shift and supplementation of the growth media with fatty acids.  相似文献   

5.
Differences between clones of the diatom Cylindrotheca fusiformi were studied with respect to growth rate, total lipid content and fatty acid composition. Sixty clones were isolated and cultivated under batch conditions. All clones were grown under identical conditions (temperature 22±1°C, light intensity 100 μmol photon m−2 s−1, salinity 28, F/2 medium) and were harvested in the late exponential growth phase for lipid and fatty acid analysis. The results show a wide variation in growth, total lipid content and fatty acid profiles among clones (p<0.05). The major fatty acids in the 60 clones were 14:0 (4.6–9.1%), 16:0 (18.2–32.0%), 16:1n-7 (21.6–33.1%), 20:4n-6 (4.1–13.5%) and 20:5n-3 (6.2–17.2%), with the highest proportion of 20:4n-6 in clone CF13 (13.5%), and the highest proportion of 20:5n-3 in clone CF5 (17.2%). The results support the view that some microalgal fatty acid variation is not restricted to interspecific variation and external factors, but also varies from clone to clone within the same species.  相似文献   

6.
The transport of α-methyl-D-glucoside and two aminoacids, L-phenylalanine and L-leucine by a temperature sensitive fatty acid requiring mutant ofSalmonella typhimurium was studied under conditions of supplementation withcis or trans-unsaturated fatty acids. The results of such experiments definitely establish a relationship between the fatty acids composition of the membrane and the transport property of the cells. Cells grown in the presence of trans-unsaturated fatty acids cannot transport so efficiently as compared to the cis-unsaturated fatty acid-grown cells except linolelaidic acid, atrans-trans-unsaturated fatty acid. Protein: phospholipid ratio of the membrane also varies significantly under such conditions. The affinity of L-phenylalanine transport carrier for the substrate changes remarkably in cells grown in the presence of differentcis or trans-unsaturated fatty acids and indicate the possible role of membrane lipids in membrane assembly as well as regulation of the activity of L-phenylalanine transport system.  相似文献   

7.
The dsz desulfurization gene cluster from Rhodococcus erythropolis strain KA2-5-1 was transferred into R. erythropolis strain MC1109, unable to desulfurize light gas oil (LGO), using a transposon-transposase complex. As a result, two recombinant strains, named MC0203 and MC0122, were isolated. Resting cells of strain MC0203 decreased the sulfur concentration of LGO from 120 mg l–1 to 70 mg l–1 in 2 h. The LGO-desulfurization activity of strain MC0203 was about twice that of strain MC0122 and KA2-5-1. The 10-methyl fatty acids of strain MC0203 were about 28%–41% that of strain MC1109. It is likely that strain MC0203 had a mutation involving alkylenation or methylation of 9-unsaturated fatty acids caused by the transposon inserted in the chromosome, which increased the fluidity of cell membranes and enhanced the desulfurization activity.  相似文献   

8.
Membrane fluidity adaptation to the low growth temperature in Bacillus subtilis involves two distinct mechanisms: (1) long-term adaptation accomplished by increasing the ratio of anteiso- to iso-branched fatty acids and (2) rapid desaturation of fatty acid chains in existing phospholipids by induction of fatty acid desaturase after cold shock. In this work we studied the effect of medium composition on cold adaptation of membrane fluidity. Bacillus subtilis was cultivated at optimum (40 °C) and low (20 °C) temperatures in complex medium with glucose or in mineral medium with either glucose or glycerol. Cold adaptation was characterized by fatty acid analysis and by measuring the midpoint of phospholipid phase transition Tm (differential scanning calorimetry) and membrane fluidity (DPH fluorescence polarization). Cells cultured and measured at 40 °C displayed the same membrane fluidity in all three media despite a markedly different fatty acid composition. The Tm was surprisingly the highest in the case of a culture grown in complex medium. On the contrary, cultivation at 20 °C in the complex medium gave rise to the highest membrane fluidity with concomitant decrease of Tm by 10.5 °C. In mineral media at 20 °C the corresponding changes of Tm were almost negligible. After a temperature shift from 40 to 20 °C, the cultures from all three media displayed the same adaptive induction of fatty acid desaturase despite their different membrane fluidity values immediately after cold shock.  相似文献   

9.
Summary The minimum requirement for unsaturated fatty acids was investigated inE. coli using a mutant impaired in the synthesis of vaccenic acid. Exogenously supplied palmitic acid was incorporated by this mutant which led to a reduction in the proportion of cellular unsaturated fatty acids. Growth was impaired as the level of saturated fatty acids approached 76% at 37°C and 60% at 30°C. The basis of this growth inhibition was investigated. Most transport systems and enzymes examined remained active in palmitate-grown cells although the specific activities of glutamate uptake and succinic dehydrogenase were depressed 50%. Fluorescent probes of membrane organization indicated that fluidity decreased with palmitate incorportation. Temperature scans with parinaric acid indicated that rigid lipid domains exist in palmitategrown cells at their respective growth temperature. Freeze-fracture electron microscopy confirmed the presence of phase separations (particle-free areas) in palmitate-grown cells held at their growth temperature prior to quenching. The extent of this separation into particle-free and particle-enriched domains was equivalent to that induced by a shift to 0°C in control cells. The incorporation of palmitate increased nucleotide leakage over threefold. The cytoplasmic enzyme -galactosidase was released into the surrounding medium as the concentration of unsaturated fatty acid approached the minimum for a particular growth temperature. Lysis was observed as a decrease in turbidity when cells which had been grown with palmitate were shifted to a lower growth temperature. From these results we propose that leakage and partial lysis are the major factors contributing to the apparent decrease in growth rate caused by the excessive incorporation of palmitate. Further, we propose that membrane integrity may determine the minimum requirement for unsaturated fatty acids inE. coli rather than a specific effect on membrane transport and/or membrane-bound enzymes.  相似文献   

10.
The incorporation of exogenously supplied fatty acids, palmitic acid, palmitoleic acid, oleic acid and linoleic acid, was examined in the yeast Schizosaccharomyces pombe at two growth temperatures, 20 °C and 30 °C. Fatty acids supplied to S. pombe in the growth medium were found to be preferentially incorporated into the cells, becoming a dominant species. The relative increase in exogenous fatty acids in cells came at the expense of endogenous oleic acid as a proportion of total fatty acids. Lowering the temperature at which the yeast were grown resulted in decreased levels of incorporation of the fatty acids palmitic acid, palmitoleic acid and linoleic acid compared to cells supplemented at 30 °C. In addition, the relative amount of the endogenously produced unsaturated fatty acid oleic acid, while greatly reduced compared to unsupplemented cells, was increased in cells supplemented with fatty acids at 20 °C compared to supplemented cells at 30 °C. The differential production of oleic acid in S. pombe cells indicates that regulation of unsaturated fatty acid levels, possibly by control of the stearoyl-CoA desaturase, is an important control point in membrane composition in response to temperature and diet in this species.  相似文献   

11.
A strictly anaerobic, thermophilic, fatty acids-degrading, sporulating sulfate-reducing bacterium was isolated from geothermal ground water. The organism stained Gram-negative and formed gas vacuoles during sporulation. Lactate, ethanol, fructose and saturated fatty acids up to C18 served as electron donors and carbon sources with sulfate as external electron acceptor. Benzoate was not used. Stoichiometric measurements revealed a complete oxidation of part of butyrate although growth with acetate as only electron donor was not observed. The rest of butyrate was oxidized to acetate. The strain grew chemolithoautotrophically with hydrogen plus sulfate as energy source and carbon dioxide as carbon source without requirement of additional organic carbon like acetate. The strain contained a c-type cytochrome and presumably a sulfite reductase P582. Optimum temperature, pH and NaCl concentration for growth were 54°C, pH 7.3–7.5 and 25 to 35 g NaCl/l. The G+C content of DNA was 50.4 mol %. Strain BSD is proposed as a new species of the spore-forming sulfate-reducing genus Desulfotomaculum, D. geothermicum.  相似文献   

12.
The growth-temperature range of the actinomycete, Thermomonospora curvata, was influenced by the nature of the soluble carbon sources used, which were derived from cellulose, pectin, starch and xylan. This thermophile had the broadest (38 to 65°C) and narrowest (42 to 59°C) temperature range during growth on cellobiose (from cellulose) and 4-deoxy-Lxxx-threo-t-hexoseulose uronic acid (from pectin), respectively. This substrate-temperature interaction was accompanied by changes in cellular fatty acids: uronic-acid-grown cells had relatively low amounts of branched chain fatty acids (particularly iso-16:0) and high amounts of monounsaturated fatty acids (particularly cis-18:1) compared with cells grown on any other substrate. Moreover, uronic-acid-grown cells could not respond to increased growth temperature by altering the ratio of branched chain fatty acids to straight chain fatty acids.F.J. Stutzenberger is with the Department of Microbiology, Clemson University, Clemson, SC 29634-1909, USA; T.C. Jenkins is with the Department of Animal, Dairy and Veterinary Sciences at the same university.  相似文献   

13.
A proteolytic thermophilic bacterial strain, designated as strain SF03, was isolated from sewage sludge in Singapore. Strain SF03 is a strictly aerobic, Gram stain-positive, catalase-positive, oxidase-positive, and endospore-forming rod. It grows at temperatures ranging from 35 to 65°C, pH ranging from 6.0 to 9.0, and salinities ranging from 0 to 2.5%. Phylogenetic analyses revealed that strain SF03 was most similar to Saccharococcus thermophilus, Geobacillus caldoxylosilyticus, and G. thermoglucosidasius, with 16S rRNA gene sequence identities of 97.6, 97.5 and 97.2%, respectively. Based on taxonomic and 16S rRNA analyses, strain SF03 was named G. caldoproteolyticus sp. nov. Production of extracellular protease from strain SF03 was observed on a basal peptone medium supplemented with different carbon and nitrogen sources. Protease production was repressed by glucose, lactose, and casamino acids but was enhanced by sucrose and NH4Cl. The cell growth and protease production were significantly improved when strain SF03 was cultivated on a 10% skim-milk culture medium, suggesting that the presence of protein induced the synthesis of protease. The protease produced by strain SF03 remained active over a pH range of 6.0–11.0 and a temperature range of 40–90°C, with an optimal pH of 8.0–9.0 and an optimal temperature of 70–80°C, respectively. The protease was stable over the temperature range of 40–70°C and retained 57 and 38% of its activity at 80 and 90°C, respectively, after 1 h.  相似文献   

14.
Summary WhenMortierella elongata NRRL 5513 was cultured in shake flasks at 25°C, mycelial growth reached a stationary phase at 48 h but maximum eicosapentaenoic acid (EPA) production was observed at 6 days. When incubated at 11°C, EPA production also continued to rise during the stationary phase of growth, reaching a maximum after 10 days. An initial culture pH of 6.1 was found to be optimum for EPA production. The effect of temperature on EPA production was dependent on medium constituents. In glucose and linseed oil supplemented media, optimum temperature for EPA production was 11 and 15°C respectively. A maximum EPA yield of 0.61 g/l was obtained in linseed oil (2%), yeast extract (0.5%) supplemented basal medium. Maximum EPA content as a percentage of lipids (15.12%) was observed when the latter medium was supplemented with 0.25% urea.  相似文献   

15.
Hydroxy fatty acids (HFAs), originally found in small amount mainly from plant systems, are well known to have special properties such as higher viscosity and reactivity compared with other normal fatty acids. Recently, various microbial strains were tested to produce HFAs from different unsaturated fatty acids. Among those microbial strains tested, Pseudomonas aeruginosa PR3 are well known to utilize various unsaturated fatty acids to produce mono-, di-, and tri-HFAs. Previously, we reported that strain PR3 could utilize triolein as a substrate for the production of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) via the induction of lipase activity (Chang et al., Appl Microbiol Biotechnol, 74:301–306, 2007). In this study, we focused on the development of the optimal environmental conditions for DOD production from triolein by PR3. Optimal initial medium pH and incubation temperature were pH 8.0 and 25°C, respectively. Magnesium ion was essentially required for DOD production. Optimal inoculum size, time for substrate addition, and substrate concentration were 1%, 12 to 24 h, and 300 mg, respectively.  相似文献   

16.
A novel, oil-degrading bacterium (strain T1) was isolated from a hot spring in Hokkaido, Japan. It efficiently degrades different types of fats and oils, including edible oil waste. When grown in a mineral salt medium containing 1% triacylglycerol (as salad oil), hydrolysis products were 1,3- and 1,2-diacylglycerols, monoacylglycerol, and free fatty acid. However, these products were almost completely consumed during cultivation at 30°C for 5 days, indicating that extracellular lipase acts randomly at different sn-positions of acylglycerols and that strain T1 has a high capacity to utilize free fatty acids. Secreted lipase activity was induced by salad oil and oleic acid. This strain was a Gram-negative straight rod shaped, aerobic, with a polar flagellum, capable of growing in temperature ranges between 15°C and 55°C. The 16S rRNA gene sequence analysis and DNA-DNA hybridization revealed it as a new strain of Pseudomonas aeruginosa. The type strain was T1.  相似文献   

17.
A gram-positive, motile, strict anaerobic spore-forming bacterium was isolated from the over-cooled brine in the permafrost. The optimal temperature for isolate growth was 5-6 degrees C at pH 6.8-7.2. The bacterium was growing on the medium rich in saccharides and disaccharides. Out of polysaccharides tested, only xylan sustained the growth. Fermentation of the hexoses led to the formation of acetate, butyrate, lactate, H2,CO2 and some formate and ethanol. Cell wall peptidoglycan contained meso-diaminopimelic acid. The major fatty acids of the cell wall were C(14:0) and C(16:1c9). The content of G-C pairs in DNA was 31.4 mol%. As phylogenetic analysis has shown, it is closely linked to the members of cluster 1 of Clostridium. It differs from the other species of the genus by the substrates necessary for the growth, products forming as a result of the fermentation and content of the fatty acids in the cell wall. Thus, it was suggested to describe this strain as a new species named Clostridium algoriphilum. Type strain 14D1 was deposited into the Russian Collection of the Microorganisms VKM B-2271T and German Collection of the Microorganisms DSM 16153T .  相似文献   

18.
A study of the fatty acid composition was made for 35 Arthrospira strains, concentrating on the most abundant fatty acids, the two polyunsaturated C18 acids, linoleic and γ-linolenic acid, and palmitic acid. When grown at 30 C and low irradiance (10 μmol photon m−2 s−1), these three acids together formed 88–92% of total fatty acids. There were considerable differences in the composition of the two polyunsaturated acids. Depending on the strain, linoleic acid formed 13.1–31.5% and γ-linolenic acid formed 12.9–29.4% total fatty acids. In contrast, the range for palmitic acid was narrow: 42.3–47.6% of total fatty acids. Repeat experiments on several strains under defined conditions led to closely similar results for any particular environment, suggesting that fatty acid composition can be used as an aid in differentiating between strains. Five additional strains, which had apparently originated from the same original stock cultures as 3 of the 35 in the main study, but from different culture collections, were also assayed. With four strains the results were similar, irrespective of culture source, but with one strain marked differences occurred, especially in the polyunsaturated C18 fatty acid fraction. These differences were independent of the age of the culture. In addition, straight morphotypes derived during repeat subcultures of four strains; each showed a similar fatty acid composition to that of the helical morphotypes of the same strains. A decrease in temperature from 30 to 20 C, an increase in irradiance (at 30 C) from 10 to 70 μmol photon m−2 s−1 and transfer to dark heterotrophy all favoured an increase in polyunsaturated C18 fatty acids. The highest γ-linolenic acid content of any conditions was found for three strains grown heterotrophically on glucose in the dark at 30 C. A comparative study of six strains of Spirulina confirmed a previous study showing the absence of γ-linolenic acid in all Spirulina strains, thus permitting the separation of these two genera.  相似文献   

19.
Summary The characteristics of Bifidobacterium bifidum grown in solid state fermentation (SSF) system (water content of media 54.5 and 68.8%) was compared with the submerged fermentation (SmF) system (water content of medium: 89.8%). Besides lactic acid (lactate) and acetic acid (acetate), the bacterium was able to secrete propionic acid (propionate) and butyric acid (butyrate) under SSF conditions. However, it only produced lactate and acetate under SmF conditions. The ratio of lactate to acetate was 1.26–1.62:1 in SSF but it was 1:2 in SmF. A higher content of C16:0 and C18:1 as well as a lower content of C18:0 cell membrane fatty acids were observed in SSF than in SmF. There was a lower growth rate, a lower viable count and a longer logarithmic growth phase for B. bifidum cultivated in SSF than in SmF.  相似文献   

20.
An Antarctic psychrotrophic bacterium, Shewanella livingstonensis Ac10, produces cis-5,8,11,14,17-eicosapentaenoic acid (EPA), a long-chain polyunsaturated fatty acid (LPUFA), as a component of membrane phospholipids at low temperatures. The EPA-less mutant generated by disruption of the EPA synthesis gene becomes cold-sensitive. We studied whether the cold sensitivity could be suppressed by supplementation of various LPUFAs. The EPA-less mutant was cultured at 6°C in the presence of synthetic phosphatidylethanolamines (PEs) that contained oleic acid at the sn-1 position and various C20 fatty acids with different numbers of double bonds from zero to five or cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) at the sn-2 position. Mass spectrometric analyses revealed that all these fatty acids became components of various PE and phosphatidylglycerol species together with shorter partner fatty acids, indicating that large-scale remodeling followed the incorporation of synthetic PEs. As the number of double bonds in the sn-2 acyl chain decreased, the growth rate decreased and the cells became filamentous. The growth was restored to the wild-type level only when the medium was supplemented with phospholipids containing EPA or DHA. We found that about a half of DHA was converted into EPA. The results suggest that intact EPA is best required for cold adaptation of this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号