首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tannase production by Aspergillus niger Aa-20 was studied in submerged (SmF) and solid-state (SSF) fermentation systems with different tannic acid and glucose concentrations. Tannase activity and productivity were at least 2.5 times higher in SSF than in SmF. Addition of high tannic acid concentrations increased total tannase activity in SSF, while in SmF it was decreased. In SmF, total tannase activity increased from 0.57 to 1.03 IU/mL, when the initial glucose concentration increased from 6.25 to 25 g/L, but a strong catabolite repression of tannase synthesis was observed in SmF when an initial glucose concentration of 50 g/L was used. In SSF, maximal values of total tannase activity decreased from 7.79 to 2.51 IU when the initial glucose concentration was increased from 6.25 to 200 g/L. Kinetic results on tannase production indicate that low tannase activity titers in SmF could be associated to an enzyme degradation process which is not present in SSF. Tannase titers produced by A. niger Aa-20 are fermentation system-dependent, favoring SSF over SmF. Journal of Industrial Microbiology & Biotechnology (2001) 26, 296–302. Received 07 July 2000/ Accepted in revised form 15 February 2001  相似文献   

2.
Different carbon (C) sources, mainly carbohydrates and lipids, have been screened for their capacity to support growth and lipase production by Penicillium restrictum in submerged fermentation (SmF) and in solid-state fermentation (SSF). Completely different physiological behaviors were observed after the addition of easily (oleic acid and glucose) and complex (olive oil and starch) assimilable C sources to the liquid and solid media. Maximal lipolytic activities (12.1 U/mL and 17.4 U/g) by P. restrictum were obtained with olive oil in SmF and in SSF, respectively. Biomass levels in SmF (12.2–14.1 mg/mL) and SSF (7.0–8.0 mg/g) did not varied greatly with the distinct C sources used. High lipase production (12.3 U/g) using glucose was only attained in SSF, perhaps due to the ability of this fermentation process to minimize catabolite repression.  相似文献   

3.
Exopectinase production by Aspergillus niger was compared in submerged fermentation (SmF) and solid-state fermentation (SSF). SSF was carried out using polyurethane foam (PUF) as the solid support. The purpose was to study the effect of sucrose addition (0 or 40 g/l) and water activity level (A w=0.99 or 0.96) on the level of enzyme activity induced by 15 g/l of pectin. Mycelial growth, as well as extracellular protease production, was also monitored. Sucrose addition in SmF resulted in catabolite repression of exopectinase activity. However, in SSF, an enhancement of enzyme activity was observed. Protease levels were minimal in SSF experiments with sucrose and maximal in SmF without sucrose. Exopectinase yields (IU/g X) were negligible in SmF with sucrose. The high levels of exopectinase with sucrose and high A w in SSF can be explained by a much higher level of biomass production without catabolite repression and with lower protease contamination. Journal of Industrial Microbiology & Biotechnology (2001) 26, 271–275. Received 05 July 2000/ Accepted in revised form 27 January 2001  相似文献   

4.
A solid‐state fermentation (SSF) system for production of an industrially important enzyme laccase by Pleurotus ostreatus was developed by using potato dextrose yeast extract medium and polyurethane foam as a supporting material. The maximum laccase production in the SSF system was as high as 3×105 U/L. Addition of inducers, such as copper and ferulic acid, further enhanced the laccase production in SSF. Moreover, the time required for the maximum laccase production was reduced to 6 days compared to 10 days reported earlier. The improvement achieved by the SSF system was investigated by comparing it to a submerged fermentation system (SmF), both experimentally and by using a standard theoretical model along with a parameter sensitivity analysis. Laccase production in SSF was found to be twice of that in SmF. One of the main reasons for higher laccase production in SSF compared to SmF was possibly due to the presence of higher proteolytic activity in SmF. Strong proteolytic activity in SmF presumably caused subsequent laccase degradation, which lowered the ultimate laccase production in SmF compared to SSF.  相似文献   

5.
The tannase-producing efficiency of liquid-surface fermentation (LSF) and solid-state fermentation (SSF) vis-à-vis submerged fermentation (SmF) was investigated in a strain of Aspergillus niger, besides finding out if there was a change in the activity pattern of tannase in these fermentation processes. The studies on the physicochemical properties were confined to intracellular tannase as only this form of enzyme was produced by A. niger in all three fermentation processes. In LSF and SmF, the maximum production of tannase was observed by 120 h, whereas in SSF its activity peaked at 96 h of growth. SSF had the maximum efficiency of enzyme production. Tannase produced by the SmF, LSF and SSF processes had similar properties except that the one produced during SSF had a broader pH stability of 4.5-6.5 and thermostability of 20 degrees-60 degrees C.  相似文献   

6.
Mutants of Penicillium janthinellum NCIM 1171 were evaluated for cellulase production using both submerged fermentation (SmF) and solid state fermentation (SSF). Mutant EU2D-21 gave highest yields of cellulases in both SmF and SSF. Hydrolysis of Avicel and cellulose were compared using SmF and SSF derived enzyme preparations obtained from EU2D-21. Surprisingly, the use of SSF derived preparation gave less hydrolysis compared to SmF derived enzymes. This may be due to inactivation of β-glucosidase at 50 °C in SSF derived enzyme preparations. SmF derived enzyme preparations contained both thermostable and thermosensitive β-glucosidases where as SSF derived enzyme preparations contained predominantly thermosensitive β-glucosidase. This is the first report on less thermostability of SSF derived β-glucosidase which is the main reason for getting less hydrolysis.  相似文献   

7.
The biodegradation and mineralisation of hexadecane (HXD) by Aspergillus niger were studied in SmF and Solid-state fermentation (SSF). HXD concentrations ranging from 45 to 180 g/l (SSF) and from 20 to 80 g/l (SmF) were tested. HXD consumption was three times higher and fungal growth was up to 30 times faster in SSF than in SmF. The maximum HXD consumption in SmF was 62% (18% mineralised) and in SSF 100% (52% mineralised) for initial HXD concentrations of 20 and 45 g/l, respectively. The respiratory quotient in SmF increased (from 0.85 to 1.08) with increase in HXD concentration, while it was independent (approximately 0.68) of the initial HXD concentration in SSF. These results showed that the consumption rate and biodegradation efficiency for HXD were higher in SSF than in SmF.  相似文献   

8.
Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both SSF and SmF displayed similar optimum temperature at 50°C, but the optimum pH shifted from 7 (SmF) to 9(SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.  相似文献   

9.
The kinetics of β-fructofuranosidase (Ffase) production by Aspergillus niger in submerged (SmF) and solid-state fermentation (SSF) systems was investigated. The maximum productivity of Ffase (81.8 U/l per h) was obtained in SSF for 72 h while it was 18.3 U/l per h in SmF for 120 h. The productivity of extra cellular Ffase produced in SSF was 5-fold higher than in SmF. Optimization of fermentation medium for Ffase production was carried out using De Meo's fractional factorial design with seven components such as (NH4)2SO4, KH2PO4, FeSO4, MgSO4 · 7H2O, sucrose, urea and yeast extract. The media designed for SmF after two steps of optimization supported the growth of A. niger and higher productivity of Ffase (58.3 U/l per h) than with the medium before optimization. The optimized medium of SmF when used in SSF, did not improve the Ffase productivity and therefore medium for SSF was optimized independent of SmF. After two optimization steps, the media was defined for SSF which supported the growth and high level of Ffase productivity (149.1 U/l per h) in SSF compared to the medium before optimization (81.8 U/l per h) and optimized medium for SmF (58.3 U/l per h). Our results suggested that the optimized media for SmF and SSF for the production of Ffase have to be different.  相似文献   

10.
Laccase was produced by Coriolopsis rigida using barley bran as substrate in solid-state fermentation (SSF) and also by submerged fermentation (SmF). The best results were obtained in SSF with twice the amount of laccase production. Laccase could be produced from repeated batch cultures of SSF over 30 days. The laccase degraded several polycyclic aromatic hydrocarbons (PAHs) in vivo and in vitro. The addition of an effective mediator, 1-hydroxybenzotriazol (50 µM), during in vitro treatment increased the degradation rate.  相似文献   

11.
Amyloglucosidase (AMG) was produced by Aspergillus niger in solid-state fermentation (SSF), submerged fermentation (SmF) and an aqueous, two-phase system of polyethyleneglycol (PEG) and salt. In SSF, a fed-batch mode of operation gave a yield of 64 U/ml compared with 44 U/ml in batch mode. Similar trends were observed for SmF, where fed-batch cultivation gave a yield of 102 U/ml compared with 66 U/ml in batch. Shorter cultivation times (66 h) were required for SmF than for SSF (96 h). In the aqueous, two-phase cultivation, the productivity and yield of AMG were both twice those in the control fermentation.M. Ramadas is with the Department of Biochemistry, Faculty of Medicine, University of Jaffna, Kokuvil, Sri Lanka. O. Holst and B. Mattiasson are with the Department of Biotechnology, Chemical Center, Lund University, Box 124, S-221 00 Lund, Sweden  相似文献   

12.
The present article deals with the studies on the effect of media ingredients, such as carbon, nitrogen, inorganic phosphates, surfactants, and metal salts, on phytase enzyme production by Aspergillus niger CFR 335 in submerged (SmF) and solid-state fermentations (SSF). The results obtained showed a 1.5-fold higher enzyme yield in the presence of sucrose in both SmF and SSF, while peptone was found to be a favorable nitrogen source for SmF. Sodium dihydrogen phosphate (NaH2PO4) favored 34% higher enzyme yield than the control, which was followed by 19% higher activity in potassium dihydrogen phosphate (KH2PO4) in SSF at 0.015% w/v. The addition of Tween-20 in SmF showed a maximum yield of 12.6 U/mL while, SDS suppressed the growth of the fungus. None of the surfactants favored the enzyme yield in SSF. Calcium chloride (CaCl2) was extensively efficient in stimulating more than 55% higher phytase production in SmF at 0.01% v/v. In SSF, none of the metal salts stimulated phytase production.  相似文献   

13.
Bacillus pumilus ASH produced a high level of an extracellular and thermostable xylanase enzyme when grown using solid-state fermentation (SSF). Among a few easily available lignocellulosics tested, wheat bran was found to be the best substrate (5,300 U/g of dry bacterial bran). Maximum xylanase production was achieved in 72 h (5,824 U/g). Higher xylanase activity was obtained when wheat bran was moistened with deionized water (6,378 U/g) at a substrate-to-moisture ratio of 1:2.5 (w/v). The optimum temperature for xylanase production was found to be 37°C. The inoculum level of 15% was found to be the most suitable for maximum xylanase production (7,087 U/g). Addition of peptone stimulated enzyme production followed by yeast extract and mustard oil cake, whereas glucose, xylose and malt extract greatly repressed the enzyme activity. Repression by glucose was concentration-dependent, repressing more than 60% of the maximum xylanase production at a concentration of 10% (w/v). Cultivation in large enamel trays yielded a xylanase titre that was slightly lower to that in flasks. The enzyme activity was slightly lower in SSF than in SmF but the ability of the organism to produce such a high level of xylanase at room temperature and with deionized water without addition of any mineral salts in SSF, could lead to substantial reduction in the overall cost of enzyme production. This is the first report on production of such a high level of xylanase under SSF conditions by bacteria.  相似文献   

14.
The tannase production by Paecilomyces variotii was confirmed by high performance thin layer chromatography (HPTLC), and substrate specificity of the tannase was determined by zymogram analysis in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS–PAGE). A clear band of activity observed after electrophoresis of culture filtrate in non-denaturing gels indicated the production of extracellular tannase by P. varoitii. HPTLC analysis revealed that gallic acid was the enzymatic degradation product of tannic acid during the fermentation process. The optimum condition for tannase production was at 72 h of incubation in shaking condition and addition of 1.5% tannic acid, 1% glucose and 0.2% sodium nitrate at temperature of 35°C and pH of 5–7. The production of extracellular tannase from Paecilomyces variotii was investigated under optimized conditions in solid-state fermentation (SSF), submerged fermentation (SmF) and liquid surface fermentation (LSF) processes. The maximum extracellular tannase production was obtained within 60 h of incubation under SSF followed by SmF and LSF.  相似文献   

15.
《Fungal biology》2020,124(8):723-734
Aspergillus is used for the industrial production of enzymes and organic acids, mainly by submerged fermentation (SmF). However, solid-state fermentation (SSF) offers several advantages over SmF. Although differences related to lower catabolite repression and substrate inhibition, as well as higher extracellular enzyme production in SSF compared to SmF have been shown, the mechanisms undelaying such differences are still unknown. To explain some differences among SSF and SmF, the secretome of Aspergillus brasiliensis obtained from cultures in a homogeneous physiological state with high glucose concentrations was analyzed. Of the regulated proteins produced by SmF, 74% were downregulated by increasing the glucose concentration, whereas all those produced by SSF were upregulated. The most abundant and upregulated protein found in SSF was the transaldolase, which could perform a moonlighting function in fungal adhesion to the solid support. This study evidenced that SSF: (i) improves the kinetic parameters in relation to SmF, (ii) prevents the catabolite repression, (iii) increases the branching level of hyphae and oxidative metabolism, as well as the concentration and diversity of secreted proteins, and (iv) favors the secretion of typically intracellular proteins that could be involved in fungal adhesion. All these differences can be related to the fact that molds are more specialized to growth in solid materials because they mimic their natural habitat.  相似文献   

16.
A study was made to compare the production of pectinase by Aspergillus niger CH4 in solid-state (SSF) and submerged (SmF) fermentations. Production of endo- (endo-p) and exo-pectinase (exo-p) by SSF was not reduced when glucose, sucrose or galacturonic acid (up to 10%) were added to a culture medium containing pectin. Moreover, both activities increased when concentrations of the carbon sources were also increased. In SmF, these activities were strongly decreased when glucose or sucrose (3%) was added to culture medium containing pectin. The addition of galacturonic acid affected endo-p activity production to a lesser extend than exo-p. Final endo-p and exo-p activities in SSF were three and 11 times higher, respectively, than those obtained in SmF. The overall productivities of SSF were 18.8 and 4.9 times higher for endo-p and exo-p, respectively, than those in SmF. These results indicate that regulatory phenomena, such as induction-repression or activation-inhibition, related to pectinase synthesis by A. niger CH4 are different in the two types of fermentation. Correspondence to: E. Favela-Torres  相似文献   

17.
The present work was focused on finding a relationship between reactive oxygen species (ROS) and lovastatin biosynthesis (secondary metabolism) in Aspergillus terreus. In addition, an effort was made to find differences in accumulation and control of ROS in submerged (SmF) and solid-state fermentation (SSF), which could help explain higher metabolite production in the latter. sod1 expression, ROS content, and redox balance kinetics were measured during SmF and SSF. Results showed that A. terreus sod1 gene (oxidative stress defence enzyme) was intensely expressed during rapid growth phase (trophophase) of lovastatin fermentations. This high expression decreased abruptly, just before the onset of production (idiophase). However, ROS measurements detected high concentrations only in idiophase, suggesting a link between ROS and lovastatin biosynthesis. Apparently sod1 down regulation promotes the rise of ROS during idiophase. This oxidative state in idiophase was further supported by a high redox balance observed in trophophase that changed to a low value in idiophase (around six-fold lower). The patterns of ROS accumulation, sod1 expression, and redox balance behaviour were similar in SmF and SSF. However, sod1 expression and ROS concentration (ten-fold), were higher in SmF. Our results indicate a link between ROS and lovastatin biosynthesis. Also, showed differences of physiology in SSF that yield lower but more steady ROS concentrations, which could be associated to higher lovastatin production.  相似文献   

18.
A comparative study of Penicillium simplicissimum morphology and lipase production was performed using solid-state (SSF) and submerged (SmF) fermentation. SSF was carried out on babassu cake as culture medium and SmF on a semi-synthetic medium and a medium based on suspended babassu cake grains. Yield of product on biomass, specific activity and conidia production were 3.3-, 1.3- and 2-fold higher in SSF. In SmF, the type of fungus growth differed according to the medium. Using the semi-synthetic medium, the fungus formed densely interwoven mycelial masses without conidia production, whereas using the babassu-based medium the fungus formed free mycelia and adhered to the surfaces of the grains, producing conidia. The results show that babassu cake induces conidiation in SmF. In SSF, the fungus not only grew on the surface of the grains, producing conidia abundantly, but also effectively colonized and penetrated the babassu particles. The high conidia production and lipase productivity in SSF may be related to the low availability of nutrients or to other stimuli associated with this type of fermentation. Thus, the high production of the thermostable P. simplicissimum lipase, using a non-supplemented, low-cost agro-industrial residue as the culture medium, demonstrates the biotechnological potential of SSF for the production of industrial enzymes.  相似文献   

19.
We report the progress of a multi-disciplinary research project on solid-state fermentation (SSF) of the filamentous fungus Aspergillus oryzae. The molecular and physiological aspects of the fungus in submerged fermentation (SmF) and SSF are compared and we observe a number of differences correlated with the different growth conditions. First, the aerial hyphae which occur only in SSFs are mainly responsible for oxygen uptake. Second, SSF is characterised by gradients in temperature, water activity and nutrient concentration, and inside the hyphae different polyols are accumulating. Third, pelleted growth in SmF and mycelial growth in SSF show different gene expression and protein secretion patterns. With this approach we aim to expand our knowledge of mechanisms of fungal growth on solid substrates and to exploit the biotechnological applications.  相似文献   

20.
Based on amino-terminal sequencing and mass spectrometry data on the Rhizopus homothallicus lipase extracted using solid (SSF) and submerged state fermentation (SmF) methods, we previously established that the two enzymes were identical. Differences were observed, however, in terms of the specific activity of these lipases and their inhibition by diethyl p-nitrophenyl phosphate (E600). The specific activity of the SSF lipase (10,700 μmol/min/mg) was found to be 1.2-fold that of SmF lipase (8600 μmol/min/mg). These differences might be the result of residual Triton X-100 molecules interacting with the SSF lipase. To check this hypothesis, the SmF lipase was incubated with submicellar concentrations of Triton X-100. The specific activity of the lipase increased after this treatment, reaching similar values to those measured with the SSF lipase. Preincubating SSF and SmF lipases with E600 at a molar excess of 100 for 1 h resulted in 80% and 60% enzyme inhibition levels, respectively. When the SmF lipase was preincubated with Triton X-100 for 1 h at a concentration 100 times lower than the Trition X-100 critical micellar concentration, the inhibition of the lipase by E600 increased from 60% to 80%. These results suggest that residual detergent monomers interacting with the enzyme may after the kinetic properties of the Rh. homothallicus lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号