首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Park YJ  Ko JJ  Yun SL  Lee EY  Kim SJ  Kang SW  Lee BC  Kim SK 《Bioresource technology》2008,99(16):7458-7463
In this study, the potential for the application of the bioaugmentation to Cd and Zn contaminated sediment was investigated. A batch experiment was performed in the lake sediments augmented with Ralstonia sp. HM-1. The degradation capacity of 18.7 mg-DOC/l/day in the treatment group was bigger than that of the blank group (4.4 mg-DOC/l/day). It can be regarded as the result of the reduction of the metal concentration in the liquid phase due to adsorption into the sediments, with the increased alkalinity resulting from the reduction of sulfate by sulfate reducing bacteria (SRB). The removal efficiency of cadmium and zinc in the treatment group was both 99.7% after 35 days. Restrain of elution to water phase from sediment in the Ralstonia sp. HM-1 added treatment group was also shown. In particular, the observed reduction of the exchangeable fraction and an increase in the bound to organics or sulfide fraction in the treatment group indicate its role in the prevention of metal elution from the sediment. Therefore, for bioremediation and restrain of elution from the sediment polluted by metal, Ralstonia sp. augmentation with indigenous microorganism including SRB, sediment stabilization and restrain of elution to surface water is recommended.  相似文献   

2.
Sediment from lakes on abandoned coal mines in the Midwestern U.S.A. was examined to determine the factors controlling chemical composition and the role the sediment plays in lake neutralization. Sediment concentrations of many cations, (especially heavy metals) are strongly correlated with sediment sulfide concentration, but poorly correlated with the pH of the overlying water. Leaching the sediment of one lake with 1 N ammonium acetate, 0.1 N HCl, and 6 N HCl revealed that cations were mostly bound in weak acid-leachable and strong acid-leachable forms. The weak acid-leachable form is likely to be metal sulfides and calcium carbonate. The sulfide-poor sediments of extremely acid lakes contained few weak acid-leachable cations. Raw mine-spoil contained large amounts of easily leached cations. There is little relationship between changes in sediment chemistry over time determined from cores of lake sediment and past lake pH. Rates of sulfide deposition were examined in sediment cores because sulfate reduction and deposition has been suggested as a major source of alkalinity in lakes influenced by acid precipitation. Although the rate of sulfate deposition in surface mine lakes is high, it alone seems to be insufficient to cause neutralization.  相似文献   

3.
Thomas Smayda 《Hydrobiologia》1990,192(2-3):191-203
The addition of powdered limestone to intact sediment cores from oligotrophic, acid Lake Hovvatn caused pH to increase, redox potential (E7) to drop, and permitted net precipitation of phosphorous (P) from the water column. Significant pH increase was found to a sediment depth of 6 cm and a maximum increase in pH from 4.9 to 6.5 was found at a depth of 0.5 cm when dosed with 36 g m–2 of lime. Such pH increase creates important changes in sediment equilibrium chemistry and enhances habitat suitability. In the case of Hovvatn, however, sediments would consume only 5 kg of the 91 tons of applied limestone. Superficial sediments remained oxidized, but below 0.5 cm, E7 in limed sediment declined significantly more than in unlimed sediments, with a maximum difference of 102 mV versus –66 mV at a depth of 6 cm in unlimed and limed cores, respectively. Abiotic reactions account for 82 ± 54% of this reduction and the remainder is due to the oxidation of organic matter by bacteria. Precipitation of CaSO4, reduction of the sediments by organic compounds at elevated pH and inhibition of the downward diffusion of O2 by the limestone powder are potential abiotic mechanisms which could drive E7 down. Enhanced P release was not found at lowered E7, and supernatent TP concentrations dropped from 11.7 to 4.4 µg P l–1. More P was swept from solution in cores which recieved larger lime doses. The presence of chironomids caused sediment pH to increase by as much as 1.2 pH units, presumably due to NH4 release, reduced sediment E7 by as much as 171 mV and facilitated TP release during the first 17 d of core incubation. Field measurements of vertical distributions of sediment pH and E7 before and after the liming of Hovvtn corroborated laboratory findings.  相似文献   

4.
The seasonal variation in sulfate reduction ana the dynamics or sulfur ana iron geochemistry were studied throughout a year in sediment of Aarhus Bay, Denmark. A radiotracer method for measuring sulfate reduction rates was applied with incubation times down to 15 min and a depth resolution down to 2 mm in the oxidized surface layer of the sediment. The radiotracer data were analyzed by a mathematical model which showed that, due to partial, rapid reoxidation of radioactive sulfide during incubation, the actual reduction rates in this layer were probably underestimated 5-fold. In the deeper, sulfidic zone, measured rates appeared to be correct. Sulfate reduction followed the seasonal variation in temperature with maximum activity at 1–2 cm depth in late summer. In spite of its rapid production, free H2S was detectable in the porewater only below the depth of free Fe2+ at 6–7 cm throughout the year. Following the massive sedimentation from a spring phytoplankton bloom, anaerobic degradation of phytoplankton detritus was strongly stimulated over several weeks. A transient reversed redox zonation developed with a thin, black zone on top of the brown, oxidized sediment layer due to intensive sulfate and iron reduction. Mineralization through sulfate reduction was equivalent to two thirds of the annual net sedimentation of organic matter.Author for correspondence  相似文献   

5.
Sulfate reduction and sediment metabolism in Tomales Bay,California   总被引:3,自引:1,他引:2  
Sulfate reduction rates (SRR) in subtidal sediments of Tomales Bay, California, were variable by sediment type, season and depth. Higher rates were measured in near-surface muds during summer (up to 45 nmol cm-3 h-1), with lower rates in sandy sediments, in winter and deeper in the sediment. Calculations of annual, average SRR throughout the upper 20 cm of muddy subtidal sediments (about 30 mmol S m-2 d-1) were much larger than previously reported net estimates of SRR derived from both benthic alkalinity flux measurements and bay wide, budget stoichiometry (3.5 and 2.6 mmol m-2 d-1, respectively), indicating that most reduced sulfur in these upper, well-mixed sediments is re-oxidized. A portion of the net alkalinity flux across the sediment surface may be derived from sulfate reduction in deeper sediments, estimated from sulfate depletion profiles at 1.5 mmol m-2 d-1. A small net flux of CO2 measured in benthic chambers despite a large SRR suggests that sediment sinks for CO2 must also exist (e.g., benthic microalgae).  相似文献   

6.
Vertical profiles of total dissolved arsenic, manganese and iron, pH, Eh and rates of sulfate reduction were determined in a freshly-collected box core from a 335m depth station in the Laurentian Trough. The relationships observed between the profiles were further examined in the laboratory by measuring these same parameters with time in surficial sediment slurries as the Eh decreased in response to biological activity or chemical alteration.Both field and laboratory observations have shown that arsenic is released predominantly as As(III) into reducing sediment porewaters. This occurs after the dissolution of manganese oxides and at the same time as the dissolution of iron oxyhydroxides and the onset of sulfate reduction. Laboratory experiments indicated that sulfate reduction and the production of sulfide ions are not solely responsible for the release of arsenic to the porewaters, although this process is necessary to create and maintain a highly reducing environment conducive to rapid iron dissolution.The diagenesis of arsenic in Laurentain Trough sediments involves the simultaneous release of arsenic and iron at a subsurface depth, followed by its removal from porewaters by precipitation and adsorption reactions after migration by diffusion along concentration gradients. A qualitative model is presented to describe the behavior of arsenic in coastal marine sediments.Present address: Department of Geological Sciences, McGill University, 3450 UniversityStreet, Montreal, Quebec H3A 2A7, Canada  相似文献   

7.
Twenty lakes in the Matamek and nearby watersheds were sampled in the summer of 1983 for water chemistry and surficial sediments. Thirty-two physical and chemical variables, including pH, alkalinity, cations and metal concentrations were measured on samples from the epilimnion and hypolimnion of each lake. In three lakes, two to four replicate cores were collected to estimate spatial variability of the sediment flora.All lakes were acidic (pH 4.59 to 5.80), highly colored and poorly buffered. Aluminum and magnesium concentrations reached 494 and 70 µg l-1, respectively. The pH of the lakes appears to be declining, as indicated by a comparison of our results with those from a survey done in 1970. An empirical chemical model based on the alkalinity/sulfate ratio and the regression of pH on calcium also indicated that these lakes may be undergoing acidification.Analyses of the diatom flora of the surficial sediments showed strong dominance of 6 species that cooccurred with a large number of rare species (in all, 229 taxa were found). Variability among samples within a lake was as high as among lakes. Calculation of Nygaard's alpha index for each sample and the regression of its log-transformed value on surface pH yielded a relationship that was significantly from other published models. The regression model was applied to a down-core analysis of the diatom flora of the sediments of two lakes. Although the large confidence intervals on pH values predicted by the model obscured any evidence of pH change with sediment depth, there was a significant increase of acidophilous and a decrease of circumneutral species over time, suggesting that a change in the flora, possibly correlated with pH, is taking place.In making comparisons among lakes, the surficial-sediment flora did not provide clear evidence of a relationship with the pH of surface water. Indices computed from the surficial-sediment flora are apparently insensitive to differences in pH over a narrow range, particularly when the lakes being compared are similar chemically. Nygaard's alpha index is shown to be unduly sensitive to outliers. The currently accepted assumption of a progressive linear change in communities may be inadequate for the quantification of acidification processes. Other models, derived from catastrophe theory, may prove more fruitful.  相似文献   

8.
Terminal electron transport system (ETS)-activity of the sediment and plankton of Lake Balaton, the largest shallow lake of Central Europe was measured by tetrazolium-reduction biweekly during 1989–1990 and in the spring of 1991. Sediment proved to be enzymatically active to 30-35 cm down in the hypertrophic Keszthely Bay and to 15–20 cm down in the meso-eutrophic Siófok Basin. Sediment ETS-activity exceeded planktonic activity 15 to 24 fold.The total activity m–2 showed one or two order of magnitude higher respiratory potential in Lake Balaton than needed for complete oxidation of the planktonic primary production; most of this potential was detected in the upper 3–5 cm sediment layer in springs. Incubations of cell-free homogenates of sediment bacteria showed that ETS remains active days after death of organisms at low temperature. Accumulated postmortem ETS-activity derived from the benthic diatoms, bacteria, plankton deposit and dead summer macrophytes seems to be responsible for the high ETS-activity of the sediment in the warming periods in springs. These enzyme fractions may contribute to the rapid oxidation of the alkaline, well-aerated lake.  相似文献   

9.
The rates of sulfate reduction, methanogenesis, and methane loss were measured in saltmarsh sediment at monthly intervals. In addition, dissolved methane and sulfate concentrations together with pS2− and pH were determined. Methane formation from carbon dioxide, but not from acetate, was detected within the same horizon of sediment where sulfate reduction was most active. Sulfate reduction was about three orders of magnitude greater than annual methanogenesis. The two processes were not separated either spatially or temporally, but occurred within the same layer of sediment at the same time of the year. Their coexistence did not seem to be the result of sulfate-depleted microenvironments within which methanogenesis could occur, but the methanogenic bacteria persisted at very low rates of activity within the same environment as the sulfate reducers.  相似文献   

10.
Effects of road salt deicers on sediment biogeochemistry   总被引:1,自引:0,他引:1  
Road salt deicers, especially NaCl and CaCl2, are increasingly applied to paved areas throughout the world. The goal of this study is to investigate the influence of high concentrations of these salts on wetland biogeochemistry. Sediment cores were collected in fall and spring from a freshwater wetland fringing an urban kettle lake (Asylum Lake, Kalamazoo, MI, USA), and incubated for 100 days in deionized water (control) or with treatments of 1 or 5 g/L CaCl2·2H2O or 5 g/L NaCl to simulate addition of road salt deciers. At monthly intervals, cores were sliced into three depths (0–5, 5–10, 10–15 cm) and pore waters extracted for analysis of pH, total alkalinity and dissolved Mn(II), Fe(II), PO 4 ?3 , NH3, H2S, SO4 ?2, Na, K, Mg, and Ca. Changes in solid phase geochemistry were assessed by measuring the percent organic matter and the distribution of Fe and Mn among four operationally defined sediment fractions (exchangeable, carbonate, reducible, oxidizable) in the control and treatment cores. Addition of NaCl, and especially CaCl2, stimulated significant growth of microbial mats at the core sediment–water interface and led to decreased pH and increased concentrations of Mn(II), Fe(II) and exchangeable cations (Ca, Mg, K, Na) in the sediment pore waters. This study demonstrates that the influx of road salt deciers is likely to have a significant impact on biogeochemical cycling in wetland sediments.  相似文献   

11.
1. Lake eutrophication has increased phytoplankton blooms and sediment organic matter. Among higher plants, small, oligotrophic rosette species (isoetids) have disappeared, while a few tall, eutrophic species (elodeids) may have persisted. Despite recent reduction of nutrient loading in restored lakes, the vegetation has rarely regained its former composition and coverage. Patterns of recovery may depend on local alkalinity because HCO3? stimulates photosynthesis of elodeids and not of isoetids. In laboratory growth experiments with two isoetids (Lobelia dortmanna and Littorella uniflora) and two elodeids (Potamogeton crispus and P. perfoliatus), we test whether organic enrichment of lake sediments has a long‐lasting influence by: (i) reducing plant growth because of oxygen stress on plant roots and (ii) inhibiting growth more for isoetids than elodeids. We also test whether (iii) increasing alkalinity (from 0.17 to 3.20 meq. L?1) enhances growth and reduces inhibition of organic sediment enrichment for elodeids but not for isoetids. 2. In low organic sediments, higher oxygen release from roots of isoetids than elodeids generated oxic conditions to greater sediment depth for Lobelia (4.3 cm) and Littorella (3.0 cm) than for Potamogeton species (1.6–2.2 cm). Sediment oxygen penetration depth fell rapidly to 0.4–1.0 cm for all four species at even modest organic enrichment and oxygen consumption in the sediments. Roots became shorter and isoetid roots became thicker to better supply oxygen to apical meristems. 3. Growth of elodeids was strongly inhibited across all levels of organic enrichment of sediments being eight‐fold lower at the highest enrichment compared to the unenriched control. Leaf biomass of isoetids increased three‐fold by moderate organic enrichment presumably because of greater CO2 supply from sediments being their main CO2 source. At higher organic enrichment, isoetid biomass was reduced, leaf chlorophyll declined up to 10‐fold, root length declined from 7 to <2 cm and mortality rose (up to 50%) signalling high plant stress. 4. Lobelia was not affected by HCO3? addition in accordance with its use of sediment CO2. Biomass of elodeids increased severalfold by rising alkalinity from 0.17 to 3.20 meq. L?1 in accordance with their use of HCO3? for photosynthesis, while the negative impact of organically enriched sediments remained. 5. Overall, root development of all four species was so strongly restricted in sediments enriched with labile organic matter that plants if growing in situ may lose root anchorage. Other experiments demonstrate that this risk is enhanced by greater water content and reduced consolidation in organically rich sediments. Therefore, formation of more muddy and oxygen‐demanding sediments during eutrophication will impede plant recovery in restored lakes while high local alkalinity will help elodeid recovery.  相似文献   

12.
The bacterial community in a historic lake sediment core of Ardley Island, Antarctica, spanning approximately 1,600 years, was investigated by molecular approaches targeting the 16S rRNA gene fragments. The cell number in each 1 cm layer of the sediment core was deduced through semi-quantification of the 16S rRNA gene copies by quantitative competitive PCR (QC-PCR). It was found that the total bacterial numbers remained relatively stable along the entire 59 cm sediment core. Denaturing Gradient Gel Electrophoresis (DGGE) analysis and sequencing of PCR-amplified 16S rRNA gene fragments were performed to analyze the bacterial diversity over the entire column. Principle coordinates analysis suggested that the bacterial communities along the sediment core could be separated into three groups. There were obvious bacterial community shift among groups of 1–20 cm, 21–46 cm and 46–59 cm. Diversity indices indicated that the bacterial community in the 21–46 cm depth showed the highest species diversity and uniformity. The main bacterial groups in the sediments fell into 4 major lineages of the gram-negative bacteria: the α, γ and δ subdivision of Proteobacteria, the Cytophaga-Flavobacteria-Bacteroides, and some unknown sequences. The gram-positive bacteria Gemmatimonadetes, Firmicutes and Actinobacteria were also detected. The results demonstrated the presence of highly diverse bacterial community population in the Antarctic lake sediment core. And the possible influence of climate and penguin population change on the bacterial community shift along the sediment core was discussed.Shengkang Li and Xiang Xiao contributed equally to this paper  相似文献   

13.
The sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice-cover of 190 days per year. This is due to relatively high solar radiation, nutrient rich inflow waters, N2 fixation and internal nutrient loading. In order to define direction and magnitude of diffusive fluxes, soil water samplers were used to collect interstitial water from 25–150 cm depth, from within the diatomaceous sediment at the bottom of Lake Myvatn. Water depth at the sampling site was 225 cm. The pH of the interstitial water ranged from 7.16 to 7.30, while the pH of the lake water was 9.80–10.00. The concentrations of most solutes were similar 16 cm above the bottom of the lake at the sampling site and at the lake outlet. The concentrations of NO3, S, F, O2, Al, Cr, Mo, V, U, Sn and Sb were higher in the lake water than in the interstitial water. They will therefore diffuse from the lake water into the interstitial water. The concentrations of orthophosphates, PO4, and total dissolved P were highest at 25 cm depth, but Co and NH4 concentrations were highest at 50 to 100 cm depth. Thus they diffuse both up towards the lake bottom and down deeper into the sediments. The concentrations of Na, K, Ca, Mg, Sr, Mn, Li and alkalinity were greater within the sediments than in the lake water and increased continuously with depth. The Si concentration of the interstitial water was higher than in the lake water, it was highest at 25 cm depth and decreased slightly down into the sediments. The concentration gradient was greatest for bicarbonate, HCO3 , 1.5×10–7 mol cm–3 cm–1, and then in declining order for the solutes with the highest gradient; NH4, Si, Na, Ca, Mg, -S (diffusion into the sediments), K, PO4, Cl, Fe and Mn. The estimated annual diffusive flux of PO4 for Lake Myvatn was 0.1 g P m–2 yr–1, about 10% of the total PO4 input to Lake Myvatn. The H4SiO4° flux was 1.3 g Si m–2 yr–1, <1% of both the input and the annual net Si fixation by diatoms within the lake and the diffusive flux of dissolved inorganic carbon was 1% of the annual net C fixation by diatoms. Annual diffusive flux of NH4 + was 1.9 g N m–2 yr–1 similar to the input of fixed N to the lake and 24% of the net N fixation within Lake Myvatn. Thus it is important for the nitrogen budget of Lake Myvatn and the primary production in the lake since fixed nitrogen is the rate determining nutrient for primary production.  相似文献   

14.
Bendell Young  Leah  Harvey  Harold H. 《Hydrobiologia》1989,176(1):349-354
This study examines whether the process of lake acidification influences the accumulation of Fe, Zn and Cu in the tissues of the white sucker (Catostomus commersoni). Concentrations of Fe, Zn and Cu were measured in the liver, kidney and muscle of white sucker sampled from 4 acidic (pH range 4.8–5.3), 1 slightly acidic (pH = 5.8) and 3 circumneutral (pH = 6.3, 6.4) lakes located in south-central Ontario, Canada. Pearson product-moment correlation coefficients were used to determine relationships between average elemental concentrations in the 3 tissues and both sediment and water metal concentrations plus lake pH, DOC and alkalinity. Despite the 1000-fold difference in H+ concentration among the 8 study lakes, tissue concentrations of Fe, Zn and Cu did not correlate with lake pH. Average Fe, Zn and Cu tissue concentrations did not correlate with metal concentrations in lake water. Only Zn concentrations in the liver and muscle were correlated with Zn concentrations in the sediment (r = 0.83 and r = 0.88, P < 0.05). Iron and Cu were regulated by the white sucker over a wide range of lake pH and metal concentrations in both the water and sediment. In contrast, Zn tissue concentrations were correlated with sediment Zn concentrations, the latter are thought to result from Zn inputs of anthropogenic origin.  相似文献   

15.
The ionic concentrations,conductivity and pH of water in the Lake Chany complex in West Siberian Russia change from the mouth to the interior of the lake. This difference is indicative of marked evaporation of lake water from the closed water body system in the dry climate of Western Siberia. The carbon isotope composition of particulate organic matter (POM, composed mainly of phytoplankton) clearly changes, along with the pH of the water, reflecting the concentration of dissolved CO2. Carbon and nitrogen isotope signatures of Chironomus plumosus larvae, a benthic invertebrate that may feed on bulk lake sediment, systematically increase, along with those of POM and sediment organic matter (SOM), through the lake chain. Both sulfate-sulfur and nitrogen isotope compositions of the POM and SOM increase with distance from the estuary into the Lake Chany complex. Heavier sulfur and nitrogen isotope recycling from the sediment, caused by microbial sulfate reduction and denitrification, respectively, may have led to the increased sulfate-sulfur and nitrogen isotope compositions of the POM and SOM.  相似文献   

16.
The applicability of a fluidized-bed reactor (FBR)-based sulfate reducing bioprocess was investigated for the treatment of iron-containing (40-90 mg/L) acidic wastewater at low (8 degrees C) and high (65 degrees C) temperatures. The FBRs operated at low and high temperatures were inoculated with cultures of sulfate-reducing bacteria (SRB) originally enriched from arctic and hot mining environments, respectively. Ethanol was supplemented as carbon and electron source for SRB. At 8 degrees C, ethanol oxidation and sulfate reduction rates increased steadily and reached 320 and 265 mg/L.day, respectively, after 1 month of operation. After this point, the rates did not change significantly during 130 days of operation. Despite the complete ethanol oxidation and iron precipitation, the average sulfate reduction efficiency was 35 +/- 4% between days 30 and 130 due to the accumulation of acetate. At 65 degrees C, a rapid startup was observed as 99.9, 46, and 29% ethanol, sulfate, acetate removals, in respective order, were observed after 6 days. The feed pH was decreased gradually from its initial value of 6 to around 3.7 during 100 days of operation. The wastewater pH of 4.3-4.4 was neutralized by the alkalinity produced in acetate oxidation and the average effluent pH was 7.8 +/- 0.8. As in the low temperature FBR, acetate accumulated. Hence, the oxidation of acetate is the rate-limiting step in the sulfidogenic ethanol oxidation by thermophilic and psychrotrophic SRB. The sulfate reduction rate is three times and acetate oxidation rate is four times higher at 65 degrees C than at 8 degrees C.  相似文献   

17.
Stratigraphy of diatoms and chemistry in the surface sediment deposited at 35 m depth in Lake Polvijärvi was studied. The existence of annual laminations or varves in the sediment allowed a precise dating of the profile. Diatoms were analysed in 0.5 cm sequences; from 0 to 16.0 cm continuously and then intermittently every fourth 0.5 cm down to 44.0 cm. Sediment chemistry (loss-on-ignition, C, N, Fe, Mn, Mg, P, chlorophyll and carotenoids) was analysed from sediment surface down to 10.5 cm of altogether 33 subsamples, each containing 1–3 varves, and spanning the period 1921–1980. From 4.5 cm depth upwards the diatom concentration strongly increases, and the plankton diatom succession from Tabellaria flocculosa through Asterionella formosa to Melosira ambigua and Fragilaria crotonensis reflects a marked eutrophication of the lake. This algal succession occurs in pace with an increase in sediment accumulation rate and changes in sediment chemistry, which indicate increased allochthonous inputs and enhanced algal production in the lake. The change of the lake ecosystem is contemporaneous with extensive peatland draining and fertilizing that was carried out on its watershed during the past two decades. Existing chemical data from a number of lakes situated within the drainage area prove that at present the treated peatlands are the main source of nutrient loading of Lake Polvijärvi. A former period with indications of slightly increased productivity of the lake was dated by varve counting to AD 1690–1910 (35–12 cm). This period (characterised by Asterionella formosa) may coincide with that of the slash-and-burn cultivation in the area.  相似文献   

18.
Porewater acid/base chemistry in near-shore regions of an acidic lake   总被引:1,自引:0,他引:1  
Sediment porewaters in the near-shore region (within 1 m of the shoreline) of an acidic lake (Dart's Lake) were monitored during the summer of 1983 to investigate whether spatial variations in porewater acid/base chemistry were significant in this region of the lake. Previous investigations of Dart's Lake porewaters have indicated that within deeper waters (>2m depth), sediment porewaters are elevated in alkalinity relative to overlying lake water. Within the near-shore region, porewaters both considerably more and less acidic than the lake water were observed. Both reduction of strong acid anions (SO4 2–, NO3 ) and the mobilization of base cations were significant mechanisms of alkalinity production in porewaters exhibiting reducing conditions. In sediments reflecting oxic conditions, porewaters were generally more acidic than the lakewater. Measurement of groundwater seepage into the lake at the near-shore sites indicated that oxic sites exhibited elevated inputs of groundwater when compared to sites where reducing conditions existed. The acidic porewaters associated with high groundwater flows suggests that groundwater inputs to the lake may be a source of acidity (not alkalinity) on a whole-lake basis.  相似文献   

19.
The construction of three dams induced large changes in the tide range in the Eastern Scheldt, a tidal inlet in the southwestern part of the Netherlands. In 1986 the mean high tide level was reduced by almost one metre. This excluded the greater part of the medium-high marshes almost completely from tidal flooding.The absence of tidal flooding in the summer of 1986, combined with a net precipitation deficit, increased the bulk density of the sediment irreversibly from 400 to 530 kg m–3 in the top 5 cm. The subsidence of the backmarshes varied from 1 to 8 cm.The loss of moisture allowed oxygen to diffuse into the initial reducing sediment. This altered the geochemistry of the sediment significantly. The redoxcline was lowered from a mean depth of about 15 cm in 1985 to 20–30 cm in the summer of 1986. Evidence of pyrite oxidation within a narrow depth interval of 15–30 cm was obtained from the change in the composition of pore waters. The rapid increase in redox potentials (up to 600 mV) and total dissolved iron (up to 5 mM 1–1) and SO inf4 sup2– (up to 65 mM 1–1) and the decrease in pH (up to 4.5–2.5) all suggest a rapid oxidation of pyrite. Acidic conditions were found only in sediments with low contents of calcium carbonate and high contents of pyrite. The importance of seasonal changes in redox processes on the partial decalcification of the salt marsh sediments is discussed.The established of a new tide range was reflected in the pH and Eh of the sediment. In December 1987 the depth profiles of pH and Eh were again close to those observed in 1985.  相似文献   

20.
1. Concentrations of phosphorus, nitrogen and silica and alkalinity were monitored in eight shallow and four deep Danish lakes for 13 years following a phosphorus loading reduction. The aim was to elucidate the seasonal changes in nutrient concentrations during recovery. Samples were taken biweekly during summer and monthly during winter. 2. Overall, the most substantive changes in lake water concentrations were seen in the early phase of recovery. However, phosphorus continued to decline during summer as long as 10 years after the loading reduction, indicating a significant, albeit slow, decline in internal loading. 3. Shallow and deep lakes responded differently to reduced loading. In shallow lakes the internal phosphorus release declined significantly in spring, early summer and autumn, and only non‐significantly so in July and August. In contrast, in deep lakes the largest reduction occurred from May to August. This difference may reflect the much stronger benthic pelagic‐coupling and the lack of stratification in shallow lakes. 4. Nitrogen only showed minor changes during the recovery period, while alkalinity increased in late summer, probably conditioned by the reduced primary production, as also indicated by the lower pH. Silica tended to decline in winter and spring during the study period, probably reflecting a reduced release of silica from the sediment because of enhanced uptake by benthic diatoms following the improved water transparency. 5. These results clearly indicate that internal loading of phosphorus can delay lake recovery for many years after phosphorus loading reduction, and that lake morphometry (i.e. deep versus shallow basins) influences the patterns of change in nutrient concentrations on both a seasonal and interannual basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号