首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
幽门螺杆菌的感染可诱发人体产生胃炎和消化性溃疡,其组成成分热休克蛋白A(HspA)可刺激机体产生保护性的免疫反应。用PCR方法从幽门螺杆菌的染色体DNA上扩增出HspA基因片段,将其插入原核表达载体pET22b(+)中,并在BL21(DE3)大肠杆菌表达。经测序HspA基因片段有354bp组成,可编码118个氨基酸残基的多肽。SDSPAGE和免疫印迹分析检测发现,HspA基因表达的蛋白质分子量约为15kD,并证实该重组蛋白质可以被幽门螺杆菌感染阳性患者的血清所识别,同时将其免疫小鼠可刺激机体产生抗该重组蛋白质的抗体。HspA有可能作为一种有效的蛋白质疫苗用于幽门螺杆菌感染的预防和治疗。  相似文献   

2.
It is well documented that the enzymatic active site of Helicobacter pylori urease is present in the beta-subunit. An important sequence of 135 amino acids of the beta-subunit was determined from the structure of H. pylori urease and by a homology-based study of the urease of other bacteria and plants. The sequence (UreB) was expressed in Escherichia coli as a recombinant fusion protein with glutathione-S-transferase (GST). Seventeen monoclonal antibodies, UA-1-17, were produced using the UreB-GST as the immunogen. The obtained monoclonal antibodies showed a high specificity to UreB, and some of the MAbs cross-reacted with Jack bean urease. About 70% of the established MAbs displayed an inhibitory effect on the enzymatic activity of the urease. Among them, UA-15 MAb could reduce the activity by 53% and it immunologically binds to the bacterium infecting the human stomach mucosa. The antiserum induced by immunization with a recombinant UreB-GST into rabbits displayed a specific binding to mucosal surfaces of the human stomach infected with the pathogen H. pylori. Moreover, the antiserum suppressed the enzymatic activity of H. pylori urease, while the purified H. pylori urease could not induce such an antiserum.  相似文献   

3.
The gastric pathogen Helicobacter pylori harbors one Nudix hydrolase, NudA, that belongs to the nucleoside polyphosphate hydrolase subgroup. In this work, the enzymatic activity of purified recombinant NudA protein was analyzed on a number of nucleoside polyphosphates. This predicted 18.6-kDa protein preferably hydrolyzes diadenosine tetraphosphate, Ap(4)A at a k(cat) of 0.15 s(-1) and a K(m) of 80 microm, resulting in an asymmetrical cleavage of the molecule into ATP and AMP. To study the biological role of this enzyme in H. pylori, an insertion mutant was constructed. There was a 2-7-fold decrease in survival of the mutant as compared with the wild type after hydrogen peroxide exposure but no difference in survival after heat shock or in spontaneous mutation frequency. Western blot analyses revealed that NudA is constitutively expressed in H. pylori at different growth stages and during stress, which would indicate that this protein has a housekeeping function. Given that H. pylori is a diverse species and that all the H. pylori strains tested in this study harbor the nudA gene and show protein expression, we consider NudA to be an important enzyme in this bacterium.  相似文献   

4.
本实验目的是在乳酸菌中表达幽门螺杆菌(Helicobacter pylori,H.pylori) 中性粒细胞激活蛋白(NAP),口服免疫小鼠后检测其免疫原性。在实验中利用了分子克隆技术构建携带nap基因的重组原核表达质粒pNICE:sec-nap,将重组质粒转化乳酸菌NZ9000株,筛选鉴定阳性菌落,诱导表达的NAP蛋白用SDS-PAGE和Western blot进行鉴定。将雌性ICR(CV级)小鼠随机分为4组,分别用PBS、携带空质粒的乳酸菌、携带pNICE:sec-nap的乳酸菌、灭活的H.pylori 灌胃。免疫7次后检测其特异性IgG和IgA的产生。成功扩增了nap基因并构建了重组原核表达质粒pNICE:sec-nap,转化乳酸菌NZ9000后经nisin诱导可表达Mr约17kDa的重组蛋白,表达量约占菌体总蛋白量的9.5%,表达的蛋白能与兔抗H.pylori 血清特异性反应,具有良好的免疫原性。携带pNICE:sec-nap质粒的乳酸菌刺激产生的IgG水平明显高于携带空质粒组,与灭活H.pylori组没有明显的差异,但其刺激产生的IgA水平明显高于其他组。以上结果说明表达NAP蛋白的乳酸菌口服免疫小鼠后,能够刺激小鼠产生特异的IgG和IgA,对幽门螺杆菌疫苗的研究开发具有理论的意义。为乳酸菌作为抗原递送载体的研究和H.pylori口服疫苗的开发提供一定的实验基础。  相似文献   

5.
幽门螺杆菌napA基因在乳酸菌中的表达及免疫原性分析   总被引:1,自引:0,他引:1  
为在乳酸菌中表达幽门螺杆菌(Helicobacter pylori,H.pylori)中性粒细胞激活蛋白(NAP),口服免疫小鼠后检测其免疫原性。在实验中利用了分子克隆技术构建携带nap基因的重组原核表达质粒pNICE:secnap,将重组质粒转化乳酸菌NZ9000株,筛选鉴定阳性菌落,诱导表达的NAP蛋白用SDSPAGE和Western blot进行鉴定。将雌性ICR(CV级)小鼠随机分为4组,分别用PBS、携带空质粒的乳酸菌、携带pNICE:secnap的乳酸菌、灭活的H.pylori 灌胃。免疫7次后检测其特异性IgG和IgA的产生。成功扩增了nap基因并构建了重组原核表达质粒pNICE:secnap,转化乳酸菌NZ9000后经nisin诱导可表达Mr约17kDa的重组蛋白,表达量约占菌体总蛋白量的9.5%,表达的蛋白能与兔抗H.pylori 血清特异性反应,具有良好的免疫原性。携带pNICE:secnap质粒的乳酸菌刺激产生的IgG水平明显高于携带空质粒组,与灭活H.pylori组没有明显的差异,但其刺激产生的IgA水平明显高于其他组。以上结果说明表达NAP蛋白的乳酸菌口服免疫小鼠后,能够刺激小鼠产生特异的IgG和IgA,对幽门螺杆菌疫苗的研究开发具有理论意义。为乳酸菌作为抗原递送载体的研究和H.pylori口服疫苗的开发提供了一定的实验基础。  相似文献   

6.
7.
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.  相似文献   

8.
The Gram negative bacterium Helicobacter pylori is a human pathogen which infects the gastric mucosa and causes an inflammatory process leading to gastritis, ulceration and cancer. A systematic, proteome based approach was chosen to detect candidate antigens of H. pylori for diagnosis, therapy and vaccine development and to investigate potential associations between specific immune responses and manifestations of disease. Sera from patients with active H. pylori infection (n = 24), a control group with unrelated gastric disorders (n = 12) and from patients with gastric cancer (n = 6) were collected and analyzed for the reactivity against proteins of the strain HP 26695 separated by two-dimensional electrophoresis. Overall, 310 antigenic protein species were recognized by H. pylori positive sera representing about 17% of all spots separated. Out of the 32 antigens most frequently recognized by H. pylori positive sera, nine were newly identified and 23 were confirmed from other studies. Three newly identified antigens which belong to the 150 most abundant protein species of H. pylori, were specifically recognized by H. pylori positive sera: the predicted coding region HP0231, serine protease HtrA (HP1019) and Cag3 (HP0522). Other antigens were recognized differently by sera from gastritis and ulcer patients, which may identify them as candidate indicators for clinical manifestations. The data from these immunoproteomic analyses are added to our public database (http://www.mpiib-berlin.mpg.de/2D-PAGE). This platform enables one to compile many protein profiles and to integrate data from other studies, an approach which will greatly assist the search for more immunogenic proteins for diagnostic assays and vaccine design.  相似文献   

9.
目的构建含幽门螺杆菌(H.pylori)热休克蛋白A编码基因的重组载体,并电转入乳酸乳球菌MG1363,表达目的蛋白并分析其免疫原性,为H.pylori基因工程口服疫苗的研究和开发奠定基础。方法以H.py-loriNCTC 11637株基因组DNA为模板,PCR扩增hspA基因,并克隆至乳酸乳球菌表达载体pMG36e中。将重组质粒转化E.coliDH5α,经鉴定的阳性重组质粒命名为pMG36e/hspA。以电穿孔法将pMG36e/hspA转化乳酸乳球菌MG1363并用Western blot检测HspA蛋白的表达。结果克隆重组后得到pMG36e/hspA。将pMG36e/hspA电转化MG1363后,收集菌体蛋白进行Western blot分析,在HspA的相对分子质量(Mr≈13 kDa)处出现特异性条带。结论首次成功构建了表达H.pyloriHspA的重组乳酸乳球菌MG1363,为进一步口服疫苗的相关研究奠定了基础。  相似文献   

10.
幽门螺杆菌HspA融合蛋白口服疫苗的构建   总被引:6,自引:0,他引:6  
构建表达幽门螺杆菌的保护性抗原分热休克蛋白A亚单位(HspA)和霍乱毒素B亚单位(CtxB)的重组融合蛋白的生物工程菌株,以此制备幽门螺杆菌的口服疫苗。用PCR方法扩增hspA和ctxB两个目的的基因片段,将它们分别克隆至pSK(+)质粒上,然后插入含T7启动子ET-22b(+)的表达载体中,构建嗓基因的表达质量pET-hct,转化E.coliBL21(DE3),经IPTG诱导表达融合蛋白HCT。经测序,hspA-ctxB(hct)融合基因片段由726bp组成,可以编码242个氨基酸残基的多肽。经SDS-PAGE和免疫印迹分析检测发现,融合基因表达的蛋白质相对分子质量约为30kD。融合蛋白经镍离子柱纯化、复性后,和HspA共同标记同位素^125I,然后给小鼠灌胃,结果观察到HCT组小鼠血清中的^125I的放射量要明显高于HspA组(P<0.001),且吸收峰值时间明显提前。融合蛋白中的CtxB可明显促进小鼠对HspA的吸收,HCT融合蛋白可以作为预防和治疗幽门螺杆菌感染的侯选口服疫苗。  相似文献   

11.
Chan EC  Chang CC  Li YS  Chang CA  Chiou CC  Wu TZ 《Biochemistry》2000,39(16):4838-4845
Phospholipase activities of human gastric bacterium, Helicobacter pylori, are regarded as the pathogenic factors owing to their actions on epithelial cell membranes. In this study, we purified and characterized neutral sphingomyelinase (N-SMase) from the superficial components of H. pylori strains for the first time. N-SMase was purified 2083-fold with an overall recovery of 37%. The purification steps included acid glycine extraction, ammonium sulfate precipitation, CM-Sepharose, Mono-Q, and Sephadex G-75 column chromatography. Approximate molecular mass for the native N-SMase was around 32 kDa. When N-omega-trinitrophenylaminolauryl sphingomyelin (TNPAL-SM) was used as a substrate, the purified enzyme exhibited a K(m) of 6.7 microM and a V(max) of 15.6 nmol of TNPAL-sphingosine/h/mg of protein at 37 degrees C in 50 mM phosphate-buffered saline, pH 7.4. N-SMase reaches optimal activity at pH 7.4 and has a pI of 7.15. The enzyme activity is magnesium dependent and specifically hydrolyzed sphingomyelin and phosphatidylethanolamine. The enzyme also exhibits hemolytic activity on human erythrocytes. According to Western blot analysis, a rabbit antiserum against purified N-SMase from H. pylori cross-reacted with SMase from Bacillus cereus. Sera from individuals with H. pylori infection but not uninfected ones recognizing the purified N-SMase indicated that it was produced in vivo. In enzyme-linked immunosorbent assays, the purified N-SMase used as an antigen was as effective as crude protein antigens in detecting human antibodies to H. pylori.  相似文献   

12.
Helicobacter pylori infects approximately half of the world's population and the bacterium is associated with gastric cancer and peptic and duodenal ulcers. In this study, Surface Enhanced Laser Desorption /Ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was used to identify the biomarkers from H. pylori infected gastric epithelial cells (GEC) to understand key mechanisms associated with pathogenesis. Using different chip surfaces, differential protein expression profile of GEC was obtained and several upregulated or downregulated biomarkers were detected on GEC, following H. pylori infection. Four different H. pylori infected GECs were compared based on their expression of MHC class II, a receptor reported to trigger apoptosis. One biomarker was identified in H. pylori infected GEC as Annexin A2 (Annexin II) from the flow through of the anion-exchange resin. The increased expression of Annexin II in GEC following H. pylori infection was further confirmed by Western Blot analyses and indicates its involvement in H. pylori pathogenesis.  相似文献   

13.
14.
To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis . The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori .  相似文献   

15.
Helicobacter pylori infection of the stomach elicits a vigorous but ineffective host immune and inflammatory response, resulting in persistence of the bacterium for the life of the host. We have reported that in macrophages, H. pylori up-regulates inducible NO synthase (iNOS) and antimicrobial NO production, but in parallel there is induction of arginase II, generating ornithine, and of ornithine decarboxylase (ODC), generating polyamines. Spermine, in particular, has been shown to restrain immune response in activated macrophages by inhibiting proinflammatory gene expression. We hypothesized that spermine could prevent the antimicrobial effects of NO by inhibiting iNOS in macrophages activated by H. pylori. Spermine did not affect the up-regulation of iNOS mRNA levels but in a concentration-dependent manner significantly attenuated iNOS protein levels and NO production. Reduction in iNOS protein was due to inhibition of iNOS translation and not due to iNOS degradation. ODC knockdown with small interfering (si) RNA resulted in increased H. pylori-stimulated iNOS protein expression and NO production without altering iNOS mRNA levels. When macrophages were cocultured with H. pylori, killing of bacteria was enhanced by transfection of ODC siRNA and prevented by addition of spermine. These results identify a mechanism of immune dysregulation induced by H. pylori in which stimulated spermine synthesis by the arginase-ODC pathway inhibits iNOS translation and NO production, leading to persistence of the bacterium and risk for peptic ulcer disease and gastric cancer.  相似文献   

16.
The current status of Helicobacter pylori vaccines: a review   总被引:5,自引:0,他引:5  
Kabir S 《Helicobacter》2007,12(2):89-102
  相似文献   

17.
BACKGROUND: Xanthine-guanine phosphoribosyltransferase (XGPRTase) is an enzyme of purine nucleotide salvage synthesis. The gpt gene of Helicobacter pylori has been annotated as encoding an XGPRTase and proposed as essential for survival of the bacterium in vitro. The aims of this work were to investigate the structure of H. pylori XGPRTase and to compare the key features of the enzyme to other phosphoribosyltransferases employing computational, modelling, and bioinformatic tools. MATERIALS AND METHODS: XGPRTase activity was measured in the cytosolic fraction of H. pylori by (31)P-nuclear magnetic resonance spectroscopy, and also in recombinant XGPRTase produced by a cell-free expression system. Bioinformatics was employed to analyze the phylogeny of XGPRTase, and a structural model of the XGPRTase was built using threading techniques. The observed interactions of purine phosphoribosyltransferases with immucillin-GP were used to study the theoretical interactions of H. pylori XGPRTase with this transition-state analog. RESULTS: It was demonstrated that the gpt gene of H. pylori encodes a functional XGPRTase enzyme. Analyses of the XGPRTase sequence showed that the enzyme is significantly divergent from equivalent mammalian enzymes. Modelling served to identify specific features of the enzyme and key residues involved in catalysis. CONCLUSIONS: The H. pylori XGPRTase is structurally similar to other phosphoribosyltransferase enzymes, but there were significant differences between the hood domain of H. pylori XGPRTase and other purine salvage phosphoribosyltransferases. Significant differences were found between the interactions of the H. pylori and human enzymes with a purine phosphoribosyltransferase inhibitor.  相似文献   

18.
We have recently shown that adaptation of gastric mucosa to aspirin (ASA) is disturbed in Helicobacter pylori (H. pylori)-infected human stomach, but can be restored by eradication of the bacterium. The aim of this study was 1) to evaluate the influence of H. pylori on expression of heat shock protein 70 (HSP70) during ASA ingestion in these subjects and in mice model and 2) to evaluate, whether altered HSP70 expression might be associated with different adaptation to ASA in H. pylori-positive and eradicated subjects. The gastric mucosal HSP 70 gene expression was determined by quantitative RT-PCR and Western blot and immunohistochemistry during 14 days of ASA ingestion (1 g bid) in the same 8 subjects before and 3 months after successful eradication of H. pylori. In addition, HSP70 mRNA and protein expression were examined in 30 mice without and with H. pylori infection and eradication. During 14 days of ASA treatment, human H. pylori-infected mucosa revealed a decrease of HSP70 expression, while after eradication a higher expression and further increase of HSP70 expression during ASA ingestion were observed. Mice inoculated with H. pylori also exhibited decreased gastric mucosal HSP70 mRNA expression that was restored after eradication therapy. Decreased basal and ASA-induced expression of HSP70 may partly be responsible for impaired gastric adaptation to ASA in H. pylori-positive subjects. We conclude that 1. The HSP70 gene and protein expression is reduced during infection with H. pylori in men and mice and that gastric adaptation to ASA in H. pylori eradicated subjects is accompanied by increased HSP70 expression; 2. It is reasonable to assume that decreased HSP70 expression might contribute to disturbed gastric adaptation in H. pylori infection in humans and 3. The expression of HSP70 plays an important role in the mechanism of gastric adaptation to ASA and that H. pylori infection interferes with this adaptation due to decrease of HSP70 expression in gastric mucosal cells.  相似文献   

19.
Helicobacter pylori, a gram-negative spiral-shaped bacterium, specifically colonizes the stomachs of humans. Once established in this harsh ecological niche, it remains there virtually for the entire life of the host. To date, numerous virulence factors responsible for gastric colonization, survival, and tissue damage have been described for this bacterium. Nevertheless, a critical feature of H. pylori is its ability to establish a long-lasting infection. In fact, although good humoral (against many bacterial proteins) and cellular responses are observed, most infected persons are unable to eradicate the infection. A large body of evidence has shown that the interaction between H. pylori and the host is very complex. In addition to the effect of virulence factors on colonization and persistence, binding of specialized bacterial proteins, known as receptins, to certain host molecules (ligands) could explain the success of H. pylori as a chronically persisting pathogen. Some of the reported interactions are of high affinity, as revealed by their calculated dissociation constant. This review examines the binding of host proteins (serum and extracellular matrix proteins) to H. pylori and considers the significance of these interactions in the infectious process. A more thorough understanding of the kinetics of these receptin interactions could provide a new approach to preventing deeper tissue invasion in H. pylori infections and could represent an alternative to antibiotic treatment.  相似文献   

20.
Helicobacter pylori, a microaerophilic Gram-negative spiral bacterium residing in the human stomach, contains a small size soluble cytochrome c. This cytochrome c was purified from the soluble fraction of H. pylori by conventional chromatographies involving octyl-cellulose and CM-Toyopearl. Its reduced form gave an alpha absorption band at 553 nm, and thus the cytochrome was named H. pylori cytochrome c-553. The cytochrome, giving a band below 10,000 Da upon SDS-PAGE, was determined to have a mass of 8,998 by time of flight mass spectroscopy. Its N-terminal peptide sequence was TDVKALAKS---, indicating that the nascent polypeptide was cleaved to produce a signal peptide of 19 amino acid residues and a mature protein composed of 77 amino acid residues. The cb-type cytochrome c oxidase oxidized ferrocytochrome c-553 of this bacterium actively (V(max) of about 250 s(-1)) with a small K(m) (0.9 microM). Analysis of the effect of the salt concentration on the oxidase activity indicated that oxidation of cytochrome c-553 is highly inhibited under high ionic conditions. The amino acid sequence of H. pylori cytochrome c-553 showed the closest similarity to that of Desulfovibrio vulgaris cytochrome c-553, and these sequences showed a weak relationship to that of the cytochrome c(8)-group among class I cytochromes c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号