首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Dichloroacetate (DCA) is one of the toxic by products that are formed during the chlorine disinfection process of drinking water. In this study, the developmental toxicity of DCA has been determined in zebrafish (Danio rerio) embryos. Embryos were exposed to different concentrations (4, 8, 16, and 32 mM) of the compound at the 4 h postfertilization (hpf) stage of development, and were observed for different developmental toxic effects at 8, 24, 32, 55, 80, and 144 hpf. Exposure of embryos to 8-32 mM of DCA resulted in significant increases in the heart rate and blood flow of the 55 and 80 hpf embryos that turned into significant decreases at the 144 hpf time point. At 144 hpf, malformations of mouth structure, notochord bending, yolk sac edema and behavioral effects including perturbed swimming and feeding behaviors were also observed. DCA was also found to produce time- and concentration-dependent increases in embryonic levels of superoxide anion (O2*-) and nitric oxide (NO), at various stages of development. The results of the study suggest that DCA-induced developmental toxic effects in zebrafish embryos are associated with production of reactive oxygen species in those embryos.  相似文献   

2.
To assess the developmental toxicity of trichloroacetate (TCA), zebrafish embryos were exposed to 8 to 48 mM of TCA and evaluated for developmental milestones from 8‐ to 144‐hour postfertilization (hpf). All developmental toxicities are reported in this paper. Embryos were found to have developed edema in response to 16 to 48 mM of TCA exposure at 32‐ to 80‐hpf, experienced delay in hatching success in response to 24 to 48 mM at 80‐hpf. Lordosis was observed in developing embryos exposed to 40 to 48 mM at 55‐ to 144‐hpf. The observed toxic effects of TCA exposure were found to be concentration and exposure period independent. Effects were found to be associated with increases in superoxide anion production, but these increases were also found to be concentration and time independent. TCA resulted in concentration‐dependent increases in embryonic lethality at 144‐hpf, with an LC50 determined to be 29.7 mM.  相似文献   

3.
Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.  相似文献   

4.
目的:探索马兜铃水提液对斑马鱼胚胎的致畸作用和心脏毒性.方法:分别用不同浓度的马兜铃水提液和马兜铃酸A(AA)处理斑马鱼胚胎,观察致畸作用和对心脏发育影响.结果:给药组的斑马鱼胚胎出现畸形和死亡;当水提液中AA含量为0.5 μg/mL时,胚胎心率明显减慢;AA含量为5μg/mL时,胚胎在24~48 hpf之间全部死亡;水提液的LC50为1.43 μg/mL.结论:与AA相比,马兜铃水提液对斑马鱼胚胎有着更强的致畸和心脏毒性,且毒性作用具有时间和浓度依赖性.  相似文献   

5.
6.
Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10–1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish.  相似文献   

7.
We performed functional analyses of cadherin-6 (cdh6) in zebrafish nephrogenesis using antisense morpholino oligonucleotide (MO) inhibition combined with in situ hybridization. We have cloned a zebrafish homolog (accession number AB193290) of human K-cadherin (CDH6), which showed 6063% identity and 7678% similarity to the human, mouse, chicken and Xenopus homologs. Whole-mount in situ hybridization showed that cdh6 is expressed in the pronephric ducts and nephron primordia in addition to the central and peripheral nervous systems. Expression of cdh6 in the pronephric ducts was first detected at 14 hours post-fertilization (hpf) and increased to 24 hpf. Embryos injected with MOs directed against cdh6 (cdh6MOs) showed developmental defects, including a small head, body axis curvature, short yolk extension and a short bent tail by 30 hpf and edema appeared in the thorax by 42 hpf. Such defects and edema became more marked by 52 hpf and most of the affected embryos died by 5 days post-fertilization. Embryos injected with cdh6MOs were subjected to in situ hybridization with probes for the pronephric markers, wt1 and pax2.1, to examine disturbed development of the anterior region of the pronephric ducts and the nephron primordia. Histological studies showed malformation of the pronephros as abnormally fused glomerulus primordia, fused or abnormally bent pronephric tubule anlagen and coarctated pronephric ducts. These results suggest that cdh6 plays pivotal roles in the development of the pronephros in zebrafish embryos.  相似文献   

8.
This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf), however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine.  相似文献   

9.
目的:考察新设计合成的一种FAPα酶激活式靶向抗肿瘤新药甘脯酰阿霉素(Z-GP-Dox)对斑马鱼的毒性作用。方法:以阿霉素作为对照,用不同浓度的Z-GP-Dox处理4月龄的成年斑马鱼及其受精后24h(24hpf)的胚胎,观测其死亡率,并通过显微镜观察Z-GP-Dox对斑马鱼胚胎发育的影响,从形态学和电生理学方面评价其对斑马鱼心脏的毒性作用。结果:Dox对照组的斑马鱼死亡率具有明显的浓度依赖性,而经酰化修饰的前药Z-GP-Dox处理组的斑马鱼死亡率相对较低。Dox可导致斑马鱼胚胎发育严重畸形,心脏功能受损;而相同浓度的前药Z-GP-Dox处理组的胚胎发育基本正常,幼鱼的心脏形态和心率与空白对照组差异不显著。然而,当Z-GP-Dox被FAPα酶解后,其毒性则明显增强,与Dox对照组的毒性相当。结论:与Dox相比,经结构改造的前药Z-GP-Dox对斑马鱼的毒性显著降低,且具有FAPα酶激活式靶向释放特性。  相似文献   

10.
硫代硫酸钠干扰斑马鱼胚胎发育并致畸   总被引:3,自引:0,他引:3  
硫的衍生物潜在的威胁着胚胎的发育过程.斑马鱼被用于研究不同浓度(1×10-6~1 mol/L)的硫代硫酸钠(sodium thiosulfate, STS)对胚胎发育的影响,在解剖显微镜下实时观察斑马鱼胚胎发育的全过程.采用Western 印迹法检测乙酰化的微管蛋白——α-微管蛋白(acetylated tubulin, α-tubulin)和神经元增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)的表达,分别检测STS暴露后胚胎的运动神经元功能,神经元的增殖状态.发育中的斑马鱼胚胎暴露于0.1~1 mol/L STS,呈现出严重的发育迟缓,并且伴随多脏器畸形;暴露于10 μmol/L~10 mmol/L STS,胚胎呈现循环系统,神经系统以及颌面部畸形.胚胎在48 hpf (hours post fertilization)时,对STS的暴露敏感高于24 hpf和96 hpf.STS可能干扰细胞的增殖及运动神经元的正常分化.STS可能干扰正常的细胞骨架结构,并在胚胎发育晚期影响细胞增殖,对胚胎神经系统、循环系统及颌面部有致畸作用.  相似文献   

11.
Zebrafish as a model for developmental neurotoxicity testing   总被引:6,自引:0,他引:6  
BACKGROUND: To establish zebrafish as a developmental toxicity model, we used 7 well-characterized compounds to examine several parameters of neurotoxicity during development. METHODS: Embryos were exposed by semistatic immersion from 6 hrs postfertilization (hpf). Teratogenicity was assessed using a modified method previously developed by Phylonix. Dying cells in the brain were assessed by acridine orange staining (these cells are likely to be apoptotic). Motor neurons were assessed by antiacetylated tubulin staining and catecholaminergic neurons were visualized by antityrosine hydroxylase staining. RESULTS: Atrazine, dichlorodiphenyltrichloroethane (DDT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were primarily teratogenic and not specifically neurotoxic. 2,4-dichlorophenoxyacetic acid (2,4-D), dieldrin, and nonylphenol showed specific neurotoxicity; dieldrin and nonylphenol were specifically toxic to catecholaminergic neurons. Malathion, although not teratogenic, showed some nonspecific toxicity. CONCLUSIONS: Teratogenicity measured in 96-hpf zebrafish is predictive of mammalian teratogenicity and is useful in determining whether a compound causes specific neurotoxicity or general developmental toxicity. Induction of apoptosis or necrosis is an indicator of neurotoxicity. An effect on motor neurons in the caudal third of the embryo correlates with expected defects in motility. Overall, our results showed a strong correlation with mammalian data and suggest that zebrafish is a predictive animal model for neurotoxicity screening.  相似文献   

12.
Zebrafish (Danio rerio), is a well‐established vertebrate animal model widely used in developmental biology and toxicological research. In the present study, foldscope is used as an innovative tool to study the developmental stages and toxicological analysis of the zebrafish embryos. Briefly, the developmental stages, such as zygote, cleavage, blastula, gastrula, segmentation, and pharyngula formation are observed and documented using simple foldscope. Toxicological parameters upon exposure to different concentration of ethanol extract of Curcuma longa and its lead compound, ar‐turmerone along with rhodamine B (bio‐coupler) on zebrafish embryos are analyzed upto 72 hr using foldscopes in live condition. The lethal endpoints, such as coagulation, lack of somite formation, non‐detachment of tail, and lack of heartbeat are clearly monitored and documented using foldscope. Bio‐evaluation of test compounds with the aid of foldscope confirms that the toxicity is directly proportional to the concentration. Our results conclude that, ethanol extract of C. longa, ar‐turmerone and rhodamine B exposed embryos remains healthy up to 96, 48, and 24 µg concentrations, respectively. Embryos exposed to higher concentrations become coagulated, however normal physiological active movement of tail lashing and heartbeat are evident in lower concentration exposed embryos. Except coagulation, no other abnormalities are observed and interestingly, the hatching ability is not delayed, when compared with the control embryos. It is confirmed that the test compounds are not highly toxic to zebrafish embryos. Hence it can be used for further analysis, especially for studying the neural‐regeneration and its neuronal development in zebrafish embryos.  相似文献   

13.
目的 采用模式动物斑马鱼作为研究对象,观察氯丙嗪(chlorpromazine,CPZ)暴露对胚胎和幼鱼早期神经发育的影响.方法 在一般毒性评价的基础上,通过整体胚胎细胞凋亡检测和脑组织病理学检查,了解CPZ对神经发育的器质性改变;采用神经行为学方法,包括幼鱼触动逃避反应、自发运动以及惊恐逃避反射等,研究氯丙嗪暴露所致的神经发育功能性障碍.结果斑马鱼胚胎受精后6 h(6 hpf)~72 hpf暴露于CPZ(≥5 mg/L)可引起胚胎和幼鱼死亡、致畸和幼鱼孵化延迟,并呈浓度和时间依赖性;采用吖啶橙染色检测36 hpf整体胚胎凋亡细胞,发现凋亡细胞主要集中在胚胎中脑、后脑、丘脑以及中后脑连接区、脊索和尾部等处;脑组织病理学检测发现,7dpf幼鱼颅腔增大、脑体积减小、脑细胞缩小且细胞间隙增宽.6~72 hpf CPZ(≥0.0625 mg/L)暴露后,幼鱼神经行为学研究发现,CPZ(≥0.125 mg/L)可引起3dpf幼鱼触觉运动能力下降;CPZ(≥0 5 mg/L)可浓度依赖性地抑制幼鱼自发运动,并出现僵直不动、震颤或快速刻板式转圈运动等行为改变;光惊恐实验中,暗环境下各暴露组幼鱼对突发强光刺激均表现为惊跳逃避,并且暗-光交替期运动加速度变化与对照组无显著差异;在撤除光源后,1mg/L和2 mg/L暴露组幼鱼暗适应时程缩短,而0.125 mg/L和0.25 mg/L暴露组暗适应时程延长,提示CPZ对外界刺激引发的幼鱼活跃游动有抑制和促进双重毒性作用.结论 CPZ暴露对斑马鱼胚胎和幼鱼具有明显的神经发育毒性作用.模式动物斑马鱼作为一种高通量筛选模型在外源性化合物神经发育毒性评价中具有较好的应用前景.  相似文献   

14.
15.
16.
We used a green fluorescent kidney line, Tg(wt1b:GFP), as a model to access the acetaminophen (AAP)-induced nephrotoxicity dynamically. Zebrafish (Danio rerio) embryos at different developmental stages (12–60 hpf) were treated with different dosages of AAP (0–45 mM) for different time courses (12–60 h). Results showed that zebrafish embryos exhibited no evident differences in survival rates and morphological changes between the mock-treated control (0 mM) and 2.25 mM AAP-exposure (12–72 hpf) groups. In contrast, after higher doses (22.5 and 45 mM) of exposure, embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tube, pronephric duct, and a cystic and atrophic glomerulus. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AAP increased. Interestingly, under the same exposure time course (12 h) and dose (22.5 mM), embryos displayed higher percentages of severe defects at earlier developmental stage of exposure (12–24 hpf), whereas embryos displayed higher percentages of mild defects at later exposure (60–72 hpf). With an exposure time course less than 24 h of 45 mM AAP, no embryo survived by the developmental stage of 72 hpf. These results indicated that AAP-induced nephrotoxicity depended on the exposure dose, time course and developmental stages. Immunohistochemical experiments showed that the cells' morphologies of the pronephric tube, pronephric duct and glomerulus were disrupted by AAP, and consequently caused cell death. Real-time RT-PCR revealed embryos after AAP treatment decreased the expression of cox2 and bcl2, but increased p53 expression. In conclusion, AAP-induced defects on glomerulus, pronephric tube and pronephric duct could be easily and dynamically observed in vivo during kidney development in this present model.  相似文献   

17.
Hu SN  Yu H  Zhang YB  Wu ZL  Yan YC  Li YX  Li YY  Li YP 《FEBS letters》2012,586(3):222-228
Here we report that splice blocking morpholinos (Sb MO) against zebrafish sox31 elicit developmental arrest, likely through creating a series of dominant negative splicing variants. Embryos injected with the Sb MO develop normally before the Mid-Blastula Transition (MBT); however, they do not initiate epiboly. Microarray analysis of mRNAs collected at the dome stage revealed that the Sb MO impairs activation of a large set of zygotic genes and reduces degradation of maternal mRNA during MBT. Furthermore, an apoptotic response occurs in Sb morphants at about 6hpf. SoxB1 family genes including sox31 thus play an essential role for early embryos traversing the transitional stage.  相似文献   

18.
Local abnormal angiogenesis and cardiovascular system reorganization have been observed in embryos exposed to a simulated microgravity (SM) environment. In this study, changes in key molecular signals and pathways in cardiovascular development have been investigated under microgravity conditions. In particular, the caudal vein plexus (CVP) network, formed by sprouting angiogenesis has been chosen. Zebrafish embryos were exposed to SM using a ground-based microgravity bioreactor for 24 and 36 h. The SM was observed to have no effect on the zebrafish length, tail width and incubation time whereas it was observed to significantly reduce the heart rate frequency and to promote abnormal development of the CVP network in the embryos. Nitric oxide (NO) content demonstrated that the total proteins in zebrafish embryos were significantly higher in SM than in the control group grown under normal conditions. It was then preliminarily determined how NO signals were involved in SM regulated zebrafish CVP network formation. nos2b MO was injected and CVP network evolution was observed in 36 h post fertilization (hpf) under SM condition. The results showed that the CVP network formation was considerably decreased in the nos2b MO treated group. However, this inhibition of the CVP network development was not observed in control MO group, indicating that nos2b is involved in the SM-regulated vascular development process in zebrafish. Moreover, specific phosphoinositide 3-kinase (PI3K) inhibitors such as LY294002 were also tested on zebrafish embryos under SM condition. This treatment significantly inhibited the formation of zebrafish CVP network. Furthermore, overexpression of nos2b partly rescued the LY294002-caused CVP network failure. Therefore, it can be concluded that SM affects zebrafish CVP network remodeling by enhancing angiogenesis. Additionally, the PI3K-nos2b signaling pathway is involved in this process.  相似文献   

19.
Salicylic acid (SA) as a signal molecule mediates many biotic and environmental stress-induced physiological responses in plants. In this study, we investigated the role of SA in regulating Hg-induced oxidative stress in the roots of alfalfa (Medicago sativa). Plants pretreated with 0.2 mM SA for 12 h and subsequently exposed to 10 μM Hg2+ for 24 h displayed attenuated toxicity to the root. The SA-promoted root growth was correlated with decreased lipid peroxidation in root cells. The ameliorating effect of SA was confirmed by the histochemical staining for the detection of loss of membrane integrity in Hg-treated roots. We show that treatment with 0.2 mM SA increased the activity of NADH oxidase, ascorbate peroxidase (APX) and peroxidase (POD) in the roots exposed Hg. However, a slightly decreased superoxide dismutase (SOD) activity was observed in SA + Hg-treated roots when compared to those of Hg treatment alone. We also measured accumulation of ascorbate (ASC), glutathione (GSH) and proline in the roots of alfalfa and found that roots treated with SA in the presence of Hg accumulated more ASC, GSH and proline than those treated with Hg only. These results suggest that exogenous SA may improve the tolerance of the plant to the Hg toxicity.  相似文献   

20.
Zhang T  Liu XH  Rawson DM 《Theriogenology》2003,59(7):1545-1556
Stage-dependent chilling sensitivity has been reported for many species of fish embryos. Most of these studies reveal that developmental stages beyond 50% epiboly are less sensitive to chilling, but the chilling sensitivity accelerates rapidly at subzero temperatures. In this study, the effects of methanol and developmental arrest on chilling injury were studied using zebrafish (Danio rerio) embryos at 64-cell, 50% epiboly, 6-somite, prim-6 and long-bud stages. Embryos were exposed to methanol or anoxic conditions before they were cooled to 0 or -5 degrees C with slow (1 degrees C/min), medium (30 degrees C/min) or fast ( approximately 300 degrees C/min) cooling rates and were held at these temperatures for different time periods. Embryo survival was evaluated in terms of the percentage of treated embryos with normal developmental appearance after 3-day culture. Experiments on the effect of methanol on chilling sensitivity of the embryos showed that the addition of methanol to embryo medium increased embryo survival significantly at all developmental stages and under all cooling conditions. Higher concentration of methanol treatment generally improved embryo survival when embryos were cooled at a fast cooling rate of 300 degrees C/min. Experiments on the effect of developmental arrest on chilling sensitivity of embryos showed that embryos at 50% epiboly and prim-6 stages underwent developmental arrest almost immediately after 15 min oxygen deprivation. After 4h in anoxia, the survival rates of the embryos were not significantly different from their respective aerobic controls. Anoxia and developmental arrest had no effect on the chilling sensitivity of zebrafish embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号