首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
赵建周  卢美光 《昆虫学报》1998,41(4):354-358
以我国培育的转Bt基因棉花(简称Bt棉)为材料,系统测定了Bt棉叶片对棉铃虫 Helicoverpa armigera(Hubner)不同龄期幼虫的杀虫活性和抑制生长的作用。结果表明,Bt棉的杀虫活性随着龄期的增大而趋于降低,其中处理3d只对1龄幼虫有较高效果;从1~4龄开始连续取食Bt棉后均不能化蛹,5龄幼虫则能正常化蛹。3龄幼虫取食Bt棉叶3d后的体重与初始体重之比为0.94,而取食常规棉叶的相应比值为5.48,对幼虫生长的抑制作用明显。在28℃条件下用Bt棉饲养棉铃虫1~3龄幼虫3d,对幼虫的致死率显著高于25℃处理,对3龄幼虫抑制生长的作用也显著提高。研究结果可为确定棉铃虫对Bt棉的抗性监测与治理技术以及Bt棉的田间应用技术提供依据。  相似文献   

2.
八斑鞘蛛对多种猎物的选择捕食作用研究   总被引:1,自引:0,他引:1  
研究八斑鞘蛛在多种猎物共存时的日捕食量,功能反应,捕食作用率。在有棉铃虫和棉蚜共存且密度互补时,八斑鞘蛛对棉铃虫的功能反应属Holling Ⅲ型反应;一种猎物密度变化,其他种猎物密度固定时,功能反应呈Holling Ⅱ型反应。研究了捕食作用率与猎物共存种类,相对丰盛度,捕食者本身数量的关系。 计算机(IBM-PC)模拟结果表明:捕食者个体间的相互干扰、温度、猎物内禀增长率对系统稳定性有一定影响。  相似文献   

3.
在实验室条件下,研究了草间钻头蛛Hylyphantes graminicola对果蝇Drosophila melanogaster的捕食功能反应.结果表明,在一定范围内,草间钻头蛛捕食效应随猎物密度增加而增加;随自身密度增加而减小;随着蜘蛛和果蝇密度的增加,相互干扰明显,捕食效率下降;雌蛛比雄蛛捕食量大.  相似文献   

4.
【目的】为探究转Cry1Ac/1Ab基因棉花对异色瓢虫生长发育及其捕食功能的影响。【方法】以转Cry1Ac/1Ab基因棉与其亲本常规棉为实验材料,利用取食不同棉花品种叶片的棉铃虫饲喂异色瓢虫幼虫。【结果】与常规亲本棉相比,取食饲喂转基因棉花叶片的初孵棉铃虫幼虫的异色瓢虫幼虫从1龄发育至化蛹期时间延长0.77 d,但差异不显著;除1龄幼虫体重增加(0.0773 mg)外,其余各龄期幼虫体重均有所下降,但差异均不显著;异色瓢虫1、2、3、4龄幼虫对初孵棉铃虫捕食量均随棉铃虫密度的增加而增加,捕食功能反应均符合HollingⅡ圆盘方程。【结论】转Cry1Ac/1Ab基因棉花对异色瓢虫生长发育无显著影响,饲喂取食转Cry1Ac/1Ab基因棉花的棉铃虫对异色瓢虫捕食功能无显著差异。  相似文献   

5.
湖北棉区转Bt基因棉对棉铃虫的控制作用   总被引:8,自引:2,他引:6  
2000-2001年通过田间系统调查,表明转Bt基因棉(品种为GK19)在湖北江汉平原棉区对棉铃虫抗性稳定。试验设3个处理:转Bt基因棉化防田(使用化学农药控制害虫)、转Bt基因棉自控田(依靠天敌控制害虫)及常规棉对照田(利用综合防治措施控制害虫)。从棉铃虫的第2代到第5代整个发生期内,即使在不进行化学防治的情况下,棉铃虫在Bt棉田的发生量也保持在极低的水平(最高百株虫量为12头)。室内饲养结果表明,转Bt基因棉对棉铃虫的生长发育(幼虫体重、蛹重)有较为明显的影响,使6龄幼虫体重减少25.6%,蛹重减少18.2%。棉铃虫幼虫取食转Bt基因棉组织后,发育迟缓,相对于常规棉喂养的整个发育历期延长17 d,使棉铃虫在田间的危害减少至少一个世代。另外,接虫试验表明,棉铃虫幼虫在常规棉上的取食时间是转Bt基因棉株上的6.1倍,极大地减轻了棉铃虫的危害程度。  相似文献   

6.
棉铃虫Helicoverpa armigera(Hübner)是转Bt基因棉花(Bt棉)最重要的靶标害虫之一。害虫对Bt棉的抗性问题是Bt棉产业持续健康发展的最主要威胁。规避行为可以减少害虫与Bt棉的接触而降低生理抗性选择压力。在本研究中,通过比较棉铃虫对Bt棉与常规棉的行为反应评估了棉铃虫对Bt棉的行为规避能力。产卵选择结果显示,棉铃虫成虫在Bt棉上的落卵量显著低于常规棉。幼虫实验结果显示,棉铃虫初孵幼虫在Bt棉植株上的居留时间显著短于在常规棉上的居留时间。无选择条件下,1龄幼虫在对Bt棉叶的取食空洞数以及总取食量均显著低于常规棉叶。综合以上的结果,认为棉铃虫对Bt棉具有一定的行为规避能力,这可能是延缓棉铃虫对Bt棉产生抗性的因素之一。本研究能够帮助有效地预测靶标害虫对Bt作物的抗性风险。  相似文献   

7.
文章以转Cry1Ac基因棉(中棉所41)和常规棉(中棉所49)为对照,研究了转Cry1Ac+Cry2Ab基因棉(639020)在棉花生长的关键时期——蕾期(二代棉铃虫发生期)、花期(三代棉铃虫发生期)和花铃期(四代棉铃虫发生期)对棉铃虫的控制作用,同时研究了639020棉田主要捕食性天敌(中华草蛉幼虫、龟纹瓢虫、小花蝽和草间小黑蛛)对烟粉虱的捕食功能,明确了639020棉花在生长的关键时期对棉铃虫的控制效果及对棉田主要捕食性天敌捕食功能反应的影响。结果表明,639020棉花对二代和三代棉铃虫具有良好的控制作用,抗虫性分别比中棉所41提高了52.85%和16.22%,其中前者差异达显著水平,后者差异不显著。在棉花蕾期、花期和花铃期,639020棉田棉铃虫落卵量都比中棉所41棉田和中棉所49棉田低(除二代棉铃虫发生期);棉铃虫幼虫数量都极显著低于常规棉,且都低于防治指标,但与中棉所41棉田无显著差异。639020棉田中华草蛉、龟纹瓢虫、小花蝽和草间小黑蛛对烟粉虱的捕食功能与中棉所41棉田和常规棉田相比无显著变化。研究结果以期为新型转基因棉花环境安全性研究及其外源基因的抗虫遗传效应和生产应用前景进行安全性评价。  相似文献   

8.
转Bt基因棉田蜘蛛的时空动态及控害作用   总被引:6,自引:0,他引:6  
1998-1999年在河北棉区系统调查转Bt基因棉棉田中的蜘蛛发生时空的研究结果表明,在转Bt基因棉田中,全年百株累计数量为3984头,占棉田总捕食性天敌数量的49.7%。其中优势蜘蛛温室希蛛,狼蛛和草间小黑蛛分别占53.6%,16.7%和18.6%。季节动态表现为棉田前期少,中,后期多,最高可达百株454头;棉株下部和地面的蜘蛛增加快,而上,中部蜘蛛增加慢,空间分布表现为下部和地面占优势,丰富度分别为0.464和0.303,而上部蜘蛛的丰富度仅为0.067。地面蜘蛛中以狼蛛和草间小黑蛛占优势,分别占52.6%和40.6%。基于蜘蛛的数量,时空动态及与棉铃虫的配合程度认为,对棉铃虫起主要控制作用的为草间小黑蛛,温室希蛛和卷叶蛛,分别占蜘蛛总控制指数的41.3%,25.2%和10.9%。其中2代棉铃虫发生期,草间小黑蛛贡献最大。占67.7%。3代棉铃虫发生期,温室希蛛和草间小黑蛛分别占29.0%和25.4%的贡献率,4代棉铃虫发生期温室希蛛起主要作用。占45.3%的贡献率。  相似文献   

9.
不同年份油桃园三种主要害虫与其天敌的关系   总被引:1,自引:0,他引:1  
为了科学施药,合理保护和利用自然天敌进行油桃害虫的综合防治,用灰色系统分析方法、生态位分析方法和空间格局聚集强度指数分析方法,对2008年及2009年春-夏季油桃园桃蚜、小绿叶蝉和山楂叶螨与其主要捕食性天敌在数量、时间和空间格局等方面关系进行分析,两年春-夏季综合排序的结果是,桃蚜主要捕食性天敌依次是黑带食蚜蝇、异色瓢虫、三突花蟹蛛;小绿叶蝉主要捕食性天敌依次为三突花蟹蛛、锥腹肖蛸和草间小黑蛛;山楂叶螨主要捕食性天敌依次为草间小黑蛛、八斑球腹蛛和三突花蟹蛛。2008年秋季桃蚜的主要天敌依次是八斑球腹蛛、中华草蛉和锥腹肖蛸;小绿叶蝉的主要天敌依次是草间小黑蛛、锥腹肖蛸和黑带食蚜蝇;山楂叶螨的主要天敌依次为八斑球腹蛛、异色瓢虫和中华草蛉。两年春-夏季之间3种害虫及天敌数量差异均不显著。  相似文献   

10.
草间小黑蛛对茶蚜的捕食功能反应   总被引:1,自引:0,他引:1  
在实验室条件下研究了草间小黑蛛(Erigonidium graminicolum)对茶蚜(Toxoptera aurantii)的捕食作用。草间小黑蛛对茶蚜的捕食功能反应属于HollingⅡ型。草间小黑蛛有较强的种内干扰反应,随着捕食者密度的增大,草间小黑蛛的捕食率相应降低。猎物密度和天敌密度相互干扰会降低草间小黑蛛的寻找效应,但对捕食量没有影响。  相似文献   

11.
Transgenic cotton (Cossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects, the CrylAc gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was compared with Bt cotton and to a conventional nontransgenic variety. Larval survival was lower on both types of transgenic variety, compared with the conventional cotton. Survival of first-, second-, and third-stage larvae was lower on Bt+CpTI cotton than on Bt cotton. Plant structures differed in level of resistance, and these differences were similar on Bt and Bt + CpTI cotton. Likewise, seasonal trends in level of resistance in different plant structures were similar in Bt and Bt+CpTI cotton. Both types of transgenic cotton interfered with development of sixth-stage larvae to adults, and no offspring was produced by H. armigera that fed on Bt or Bt+CpTI cotton from the sixth stage onward. First-, second-, and third-stage larvae spent significantly less time feeding on transgenic cotton than on conventional cotton, and the reduction in feeding time was significantly greater on Bt+CpTI cotton than on Bt cotton. Food conversion efficiency was lower on transgenic varieties than on conventional cotton, but there was no significant difference between Bt and Bt+CpTI cotton. In 3-yr field experimentation, bollworm densities were greatly suppressed on transgenic as compared with conventional cotton, but no significant differences between Bt and Bt+CpTI cotton were found. Overall, the results from laboratory work indicate that introduction of the CpTI gene in Bt cotton raises some components of resistance in cotton against H. armigera, but enhanced control of H. armigera under field conditions, due to expression of the CpTI gene, was not demonstrated.  相似文献   

12.
Abstract The effect of transgenic double genes, Cry1A + CpTI cotton and Cry1Ac toxin on the parasitoid, Campoketis chlorideae Uchida of cotton bollworm, Helicoverpa armigera (Hübner), was investigated in the laboratory. Helicoverpa armigera larvae when in the first, second and third instar could not survive if fed on transgenic cotton leaves. Consequently, C. chlorideae larvae could not complete their development if parasitizing on such hosts. After H. armigera larvae were reared on transgenic or traditional cotton leaves for 12J48 hours, they were parasitized by C. chlorideae females. Parasitized larvae continued to feed on transgenic or traditional cotton for 12–48 h. The present results showed that the body weight of larvae of the parasitoids were significantly reduced when parasitized hosts fed on transgenic cotton leaves compared to those fed on traditional cotton. Duration of egg and larvae stage were significantly prolonged, pupal and adult weight of C. chloridae was decreased when the host larvae fed on transgenic cotton leaves longer than 48 h. The development duration of C. chlorideae pupae on the hosts fed on transgenic cotton leaves in each treatment was not significantly different from those of controls. The longevity of parasitoid females and males fed with a solution containing Cry1Ac toxin was not significantly different with that of the control.  相似文献   

13.
Abstract:  Life history parameters in two generations of endoparasitoid Campoletis chlorideae (Uchida) were examined using Bacillus thuringiensis (Bt)-resistant Helicoverpa armigera (Hübner) larvae feeding on B. thuringiensis toxin Cry1Ac. In the laboratory, Bt toxin was fed to Bt-resistant host larvae continuously in case of Bt treatment and only before or after the host larvae were parasitized in Bt–P and P–Bt treatments, respectively. C. chlorideae pupae developed faster in Bt treatment than non-Bt treatment. The shortened pupal stage duration was mainly because of the feeding of host larvae on Bt-diet before being parasitized. Body length of adult male C. chlorideae developed inside Bt-treated Bt-resistant (Bt–Bt) H. armigera larvae significantly decreased, especially in host larvae feeding on Bt-diet after being parasitized. However, survival, pupal mortality and adult longevity of C. chlorideae were almost unaffected in Bt-resistant H. armigera larvae feeding on Bt-toxin. Furthermore, Bt-treated host larvae had the same effect on the F1 progeny of C. chlorideae as the previous generation, and there was no significant difference between generations. This experiment suggests that there is very limited effect on the life history parameters in two generations of C. chlorideae parasitizing Bt–Bt H. armigera larvae. But both generations of C. chlorideae are affected when Bt-resistant H. armigera larvae fed on Bt toxin for different durations.  相似文献   

14.
The effects of transgenic Bt cotton on the overwintering generation of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), are unknown. We hypothesized that a Bt cotton diet may adversely affect fitness of this generation and examined fresh weight, lipids, glycogens, low-molecular-weight sugars and SCPs (supercooling points) of pupae, as well as survival of larvae, diapausing pupae and adult emergence in comparison with controls. Field and laboratory experiments showed that larvae fed on Bt cotton had a decreased pupation rate, and fewer entered diapause and emerged as adults compared with larvae fed non-Bt cotton. Furthermore, larvae fed Bt cotton had reduced pupal weight, glycogen content and trehalose levels both in diapausing and in non-diapausing pupae, and only diapausing pupae had an increased SCP compared to controls. The SCPs of diapausing pupae reared on Bt cotton were significantly higher than those reared on non-Bt cotton. The trehalose levels of diapausing pupae reared on Bt cotton were significantly lower than those of larvae reared on non-Bt cotton. Thus, these results suggest that a Bt cotton diet weakens the preparedness of cotton bollworm for overwintering and reduces survival of the overwintering generation, which will in turn reduce the density of the first generation in the following year. Effects of transgenic Bt cotton on the overwintering generation of cotton bollworm appear to have significantly contributed to the suppression of cotton bollworm observed throughout northern China in the past decade.  相似文献   

15.
Larvae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) that survive on genetically modified Bt cotton (Gossypium hirsutum L., Malvaceae) contribute to the risk of widespread resistance to Bt toxins. Current resistance management techniques include pupae busting, which involves deep tilling of the soil to kill overwintering pupae. Unfortunately, pupae busting runs counter to soil and water conserving techniques, such as minimum tillage. This problem could be relieved with biological control methods, whereby predators attack either larvae going to ground to pupate or moths emerging from the ground. We found that the wolf spider Tasmanicosa leuckartii (Thorell) (Araneae: Lycosidae), a common inhabitant of Australian cotton agroecosystems, is an effective predator of H. armigera, attacking and killing most larvae (66%) and emerging moths (77%) in simple laboratory arenas. Tasmanicosa leuckartii also reduced the number of emerging moths by 66% on average in more structurally complex glasshouse arenas. Males, females, and late‐instar juveniles of T. leuckartii were similarly effective. Tasmanicosa leuckartii also imposed non‐consumptive effects on H. armigera, as when a spider was present larvae in the laboratory areas spent less time on the cotton boll and more time on the soil and more mass was lost from the cotton boll. Increased loss of boll mass likely reflects changes in H. armigera foraging behavior induced by the presence of spiders (indirect non‐consumptive effects). Helicoverpa armigera spent more time as pupae when the spider was present in simple laboratory arenas, but not in more complex glasshouse enclosures. Overall, results indicate that T. leuckartii spiders can be effective predators of H. armigera late instars and moths but also suggest that, under some conditions, the presence of spiders could increase the damage to individual cotton bolls.  相似文献   

16.
Field and laboratory studies were conducted to determine the effect of transgenic Bacillus thuringiensis (Bt) corn, Zea mays L. (YieldGard Rootworm), expressing the Cry3Bb1 protein on aboveground nontarget insect predators (minute pirate bug, ladybird beetles, and carabids). Visual counts of adult and immature Orius insidiosus (Say), Coleomegilla maculata (DeGeer), Hippodamia convergens Gurin-Meneville, and Scymnus spp. occurring in Bt corn and its non-Bt isoline were made at Manhattan, KS, in 2002 and at Manhattan and Scandia, KS, in 2003. No significant differences were found between the Bt corn and non-Bt isoline plots in the abundance (number per plant) of O. insidiosus, C. maculata, H. convergens, and Scymnus spp. Field predation on Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) egg masses was also observed during the silking stage of corn at Manhattan and Scandia in 2003. No significant differences were observed among treatments in predation rate for predators with chewing versus sucking mouthparts. Two laboratory studies determined the effect of Cry3Bb1 protein expressed in Bt corn pollen on C. maculata and carabids. The larvae of C. maculata were reared on Bt pollen, non-Bt pollen, or greenbugs, Schizaphis graminum (Rondani). The duration of larval and pupal stages, developmental time from egg hatch to adult emergence, percentage of survival, and elytra length were compared among treatments. There were no significant differences in developmental time of larvae fed pollen or greenbugs during their first two instars. However, significantly prolonged development of the third (1 d) and fourth instars (2 d) was observed for larvae fed greenbugs only. Total time for larval development was significantly longer for larvae that fed on greenbugs versus larvae fed on pollen. No significant differences were observed among treatments in the percentage of larvae that pupated or pupal stage duration. Larvae that fed on greenbugs had higher pupal and adult weights compared with pollen-fed larvae. However, pupal and adult weights did not vary between the Bt and non-Bt pollen treatments. No significant differences occurred in longevity and elytra length of beetles among all treatments. Two carabid species, Harpalus caliginosus F. and Harpalus pensylvanicus DeGeer, were reared on moistened dog food sprinkled with Bt or non-Bt corn pollen. No significant differences in mortality of H. caliginosus and H. pensylvanicus were detected among any of the treatments. There was no significant effect of Bt pollen on fecundity and egg viability of H. caliginosus. Our studies showed that YieldGard Rootworm had no effect on the selected coleopteran predators; therefore, this Bt corn hybrid could be used in an integrated pest management system.  相似文献   

17.
Abstract:  The parasitic wasp, Campoletis chlorideae is an important larval parasitoid of Helicoverpa armigera a serious pest of cotton, grain legumes and cereals. Large-scale deployment of Bt -transgenic crops with resistance to H. armigera may have potential consequences for the development and survival of C. chlorideae . Therefore, we studied the tritrophic interactions of C. chlorideae involving eight insect host species and six host crops under laboratory conditions. The recovery of H. armigera larvae following release was greater on pigeonpea and chickpea when compared with cotton, groundnut and pearl millet. The parasitism by C. chlorideae females was least with reduction in cocoon formation and adult emergence on H. armigera larvae released on chickpea. Host insects also had significant effect on the development and survival of C. chlorideae . The larval period of C. chlorideae was prolonged by 2–3 days on Spodoptera exigua , Mythimna separata and Achaea janata when compared with H. armigera , Helicoverpa assulta and Spodoptera litura . Maximum cocoon formation and adult emergence were recorded on H. armigera (82.4% and 70.5%, respectively) than on other insect hosts. These studies have important implications on development and survival of C. chlorideae on alternate insect hosts on non-transgenic crop plants, when there is paucity of H. armigera larvae on transgenic crops expressing Bt -toxins.  相似文献   

18.
Experiments were conducted in small arenas and on whole plants to explore the effect of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae), as alternative prey on the predation of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) larvae by green lacewing larvae, Mallada signatus Schneider (Neuroptera: Chrysopidae). Transgenic Bt (Bollgard II®) and conventional cotton plants were included to explore potential differences in the predator's performance on these cotton types. In small arenas, the presence of 20 aphids reduced predation on H. armigera larvae by 22% (from 5.5 to 3.3 of 10) by a single lacewing larva over a 24‐h period. The presence of H. armigera reduced predation on aphids by ca. 29% (from 16.8 to 11.0 of 20) over 24 h. On whole plants, the presence of alternative prey had no effect on the number of H. armigera larvae or aphids remaining after 3 days. The presence of H. armigera larvae alone, without the predator, caused a 24% reduction in the numbers of aphids on conventional, but not on Bt cotton plants. The combination of Bt cotton and lacewing larvae caused a 96.6% removal of early‐stage H. armigera larvae, a statistically significant increase over the addition of the proportions (91.6%) removed by each factor measured separately, providing evidence of synergism. These studies suggest that the presence of aphids as alternative prey would not necessarily disrupt the predation by green lacewing on larvae of H. armigera, especially on Bt cotton.  相似文献   

19.
The effects of Cry toxins from Bacillus thuringiensis (Berliner) (Bt) on the anthocorid Orius albidipennis Reuter were studied under laboratory conditions. Tritrophic experiments were performed, in which Orius nymphs were fed Helicoverpa armigera (Hübner) larvae reared on a diet with Cry1Ac, Cry1Ab, or Cry2Ab toxins at different concentrations (0, 1, and 10 microg/ml), when supplemented with Ephestia kuehniella Zeller eggs. In complementary experiments, the Bt Cry1Ac toxin was directly fed to Orius nymphs at a very high concentration (1 mg/ml). No effects on prey consumption, developmental time, nymph survival, fecundity, and egg hatching of O. albidipennis were found in either experiment. It can be concluded that the toxins tested do not seem to pose a risk for the anthocorid O. albidipennis, especially when it is exposed through the prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号