首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The relative roles of chance colonization and subsequent gene flow in the development of insular endemic biotas have been extensively studied in remote oceanic archipelagos, but are less well characterized on nearshore island systems. The current study investigated patterns of colonization and divergence between and within two wild buckwheat species (Polygonaceae), Eriogonum arborescens and E. giganteum, endemic to the California Channel Islands to determine whether geographical isolation is driving diversification. Using plastid and nuclear sequence data and microsatellite allele frequencies, we determined that gene flow in these Eriogonum spp. is restricted by isolation. The data suggest that successful colonization of and gene flow among the islands are infrequent. Colonization appears to have followed a stepping‐stone model that is consistent with a north‐to‐south pattern across the islands. This colonization pattern coupled with relatively little post‐colonization inter‐island gene flow, particularly among southern islands, has generated a pattern of more divergent lineages on the isolated southern islands. These results run counter to the general expectation that all islands close to a continental source should receive a high level of gene flow. Finally, management recommendations focused on protecting the lineages from loss of private alleles and the erosion of the remaining genetic diversity are offered.  相似文献   

2.
Island populations provide natural laboratories for studying key contributors to evolutionary change, including natural selection, population size and the colonization of new environments. The demographic histories of island populations can be reconstructed from patterns of genetic diversity. House mice (Mus musculus) inhabit islands throughout the globe, making them an attractive system for studying island colonization from a genetic perspective. Gough Island, in the central South Atlantic Ocean, is one of the remotest islands in the world. House mice were introduced to Gough Island by sealers during the 19th century and display unusual phenotypes, including exceptionally large body size and carnivorous feeding behaviour. We describe genetic variation in Gough Island mice using mitochondrial sequences, nuclear sequences and microsatellites. Phylogenetic analysis of mitochondrial sequences suggested that Gough Island mice belong to Mus musculus domesticus, with the maternal lineage possibly originating in England or France. Cluster analyses of microsatellites revealed genetic membership for Gough Island mice in multiple coastal populations in Western Europe, suggesting admixed ancestry. Gough Island mice showed substantial reductions in mitochondrial and nuclear sequence variation and weak reductions in microsatellite diversity compared with Western European populations, consistent with a population bottleneck. Approximate Bayesian computation (ABC) estimated that mice recently colonized Gough Island (~100 years ago) and experienced a 98% reduction in population size followed by a rapid expansion. Our results indicate that the unusual phenotypes of Gough Island mice evolved rapidly, positioning these mice as useful models for understanding rapid phenotypic evolution.  相似文献   

3.
4.
Aim We use parametric biogeographical reconstruction based on an extensive DNA sequence dataset to characterize the spatio‐temporal pattern of colonization of the Old World monarch flycatchers (Monarchidae). We then use this framework to examine the role of dispersal and colonization in their evolutionary diversification and to compare plumages between island and continental Terpsiphone species. Location Africa, Asia and the Indian Ocean. Methods We generate a DNA sequence dataset of 2300 bp comprising one nuclear and three mitochondrial markers for 89% (17/19) of the Old World Monarchidae species and 70% of the Terpsiphone subspecies. By applying maximum likelihood and Bayesian phylogenetic methods and implementing a Bayesian molecular clock to provide a temporal framework, we reveal the evolutionary history of the group. Furthermore, we employ both Lagrange and Bayes‐ Lagrange analyses to assess ancestral areas at each node of the phylogeny. By combining the ancestral area reconstruction with information on plumage traits we are able to compare patterns of plumage evolution on islands and continents. Results We provide the first comprehensive molecular phylogenetic reconstruction for the Old World Monarchidae. Our phylogenetic results reveal a relatively recent diversification associated with several dispersal events within this group. Moreover, ancestral area analyses reveal an Asian origin of the Indian Ocean and African clades. Ancestral state reconstruction analyses of plumage characters provide an interpretation of the plumage differentiation on islands and continents. Ancestral plumage traits are inferred to be close to those of the Asian paradise‐flycatcher (Terpsiphone paradisi), and island species display a high degree of plumage autapomorphy compared with continental species. Main conclusions Terpsiphone paradisi is polyphyletic and comprises populations that have retained the ancestral plumage of the widespread Terpsiphone genus. The genus appears to have colonized south‐west Asia, the Indian Ocean and Africa from eastern Asia. The phylogeny and divergence time estimates indicate multiple simultaneous colonizations of the western Old World by Terpsiphone. These results reinforce a hypothesis of range expansions of a Terpsiphone paradisi‐like ancestor into eastern Asia and the western Old World.  相似文献   

5.
Aim We investigate the population genetic structure of the Maghrebian bat, Myotis punicus, between the mainland and islands to assess the island colonization pattern and current gene flow between nearby islands and within the mainland. Location North Africa and the Mediterranean islands of Corsica and Sardinia. Methods We sequenced part of the control region (HVII) of 79 bats across 11 colonies. The phylogeographical pattern was assessed by analysing molecular diversity indices, examining differentiation among populations and estimating divergence time. In addition, we genotyped 182 bats across 10 colonies at seven microsatellite loci. We used analysis of molecular variance and a Bayesian approach to infer nuclear population structure. Finally, we estimated sex‐specific dispersal between Corsica and Sardinia. Results Mitochondrial analyses indicated that colonies between Corsica, Sardinia and North Africa are highly differentiated. Within islands there was no difference between colonies, while at the continental level Moroccan and Tunisian populations were highly differentiated. Analyses with seven microsatellite loci showed a similar pattern. The sole difference was the lack of nuclear differentiation between populations in North Africa, suggesting a male‐biased dispersal over the continental area. The divergence time of Sardinian and Corsican populations was estimated to date back to the early and mid‐Pleistocene. Main conclusions Island colonization by the Maghrebian bats seems to have occurred in a stepping‐stone manner and certainly pre‐dated human colonization. Currently, open water seems to prevent exchange of bats between the two islands, despite their ability to fly and the narrowness of the strait of Bonifacio. Corsican and Sardinian populations are thus currently isolated from any continental gene pool and must therefore be considered as different evolutionarily significant units (ESU).  相似文献   

6.
Aim Populations of free‐living vertebrates on islands frequently differ from their mainland counterparts by a series of changes in morphometric, life‐history, behavioural, physiological and genetic traits, collectively referred to as the ‘island syndrome’. It is not known, however, whether the ‘island syndrome’ also affects parasitic organisms. The present study establishes the colonization pattern of the Mediterranean islands by the nematode Heligmosomoides polygyrus, a direct and specific parasite of rodent hosts of the Apodemus genus, and evaluates the effects of island colonization by this species on two components of the island syndrome: the loss of genetic diversity and the enlargement of the ecological niche. Location Heligmosomoides polygyrus was sampled on seven western Mediterranean islands ? Corsica, Crete, Elba, Majorca, Minorca, Sardinia and Sicily ? as well as in 20 continental locations covering the Mediterranean basin. Methods The mitochondrial cytochrome b gene (690 base pairs) was sequenced in 166 adult H. polygyrus individuals sampled in the 27 continental and island locations. Phylogenetic reconstructions in distance, parsimony, maximum likelihood and Bayesian posterior probabilities were carried out on the whole cytochrome b gene data set. The levels of nucleotide, haplotype and genetic divergence (Kimura two‐parameter distance estimator) diversities were estimated in each island population and in the various continental lineages. Results Phylogenetic reconstructions show that the mainland origins of H. polygyrus were continental Spain for the Balearic Islands (Majorca, Minorca), northern Italy for the Tyrrhenian Islands (Corsica, Sardinia, Elba), southern Italy for Sicily, and the Balkan region for Crete. A comparison of island H. polygyrus populations with their mainland source populations revealed two characteristic components of the island syndrome in this parasite. First, island H. polygyrus populations display a significant loss of genetic diversity, which is related (r2 = 0.73) to the distance separating the island from the mainland source region. Second, H. polygyrus exhibits a niche enlargement following insularization. Indeed, H. polygyrus in Corsica is present in both A. sylvaticus and Mus musculus domesticus, while mainland H. polygyrus populations are present exclusively in Apodemus hosts. Main conclusions Our results show that H. polygyrus has undergone a loss of genetic diversity and a niche (host) enlargement following colonization of the western Mediterranean islands. To our knowledge, this study provides the first evidence for components of the ‘island syndrome’ in a parasitic nematode species.  相似文献   

7.
A well‐used metaphor for oceanic islands is that they act as ‘natural laboratories’ for the study of evolution. But how can islands or archipelagos be considered analogues of laboratories for understanding the evolutionary process itself? It is not necessarily the case that just because two or more related species occur on an island or archipelago, somehow, this can help us understand more about their evolutionary history. But in some cases, it can. In this issue of Molecular Ecology, Garrick et al. ( 2014 ) use population‐level sampling within closely related taxa of Galapagos giant tortoises to reveal a complex demographic history of the species Chelonoidis becki – a species endemic to Isabela Island, and geographically restricted to Wolf Volcano. Using microsatellite genotyping and mitochondrial DNA sequencing, they provide a strong case for C. becki being derived from C. darwini from the neighbouring island of Santiago. But the interest here is that colonization did not happen only once. Garrick et al. ( 2014 ) reveal C. becki to be the product of a double colonization event, and their data reveal these two founding lineages to be now fusing back into one. Their results are compelling and add to a limited literature describing the evolutionary consequences of double colonization events. Here, we look at the broader implications of the findings of Garrick et al. ( 2014 ) and suggest genomic admixture among multiple founding populations may be a characteristic feature within insular taxa.  相似文献   

8.
The theory of island biogeography is most often studied in the context of oceanic islands where all island inhabitants are descendants from founding events involving migration from mainland source populations. Far fewer studies have considered predictions of island biogeography in the case of continental islands, where island formation typically splits continuous populations and thus vicariance also contributes to the diversity of island populations. We examined one such case on continental islands in southeastern Brazil, to determine how classic island biogeography predictions and past vicariance explain the population genetic diversity of Thoropa taophora, a frog endemic to the Atlantic Coastal Forest. We used nuclear microsatellite markers to examine the genetic diversity of coastal and island populations of this species. We found that island isolation has a role in shaping the genetic diversity of continental island species, with island populations being significantly less diverse than coastal populations. However, area of the island and distance from coast had no significant effect on genetic diversity. We also found no significant differences between migration among coastal populations and migration to and from islands. We discuss how vicariance and the effects of continued migration between coastal and island populations interact to shape evolutionary patterns on continental islands.  相似文献   

9.
Isolated islands and their often unique biota continue to play key roles for understanding the importance of drift, genetic variation and adaptation in the process of population differentiation and speciation. One island system that has inspired and intrigued evolutionary biologists is the blue tit complex (Cyanistes spp.) in Europe and Africa, in particular the complex evolutionary history of the multiple genetically distinct taxa of the Canary Islands. Understanding Afrocanarian colonization events is of particular importance because of recent unconventional suggestions that these island populations acted as source of the widespread population in mainland Africa. We investigated the relationship between mainland and island blue tits using a combination of Sanger sequencing at a population level (20 loci; 12 500 nucleotides) and next‐generation sequencing of single population representatives (>3 200 000 nucleotides), analysed in coalescence and phylogenetic frameworks. We found (i) that Afrocanarian blue tits are monophyletic and represent four major clades, (ii) that the blue tit complex has a continental origin and that the Canary Islands were colonized three times, (iii) that all island populations have low genetic variation, indicating low long‐term effective population sizes and (iv) that populations on La Palma and in Libya represent relicts of an ancestral North African population. Further, demographic reconstructions revealed (v) that the Canary Islands, conforming to traditional views, hold sink populations, which have not served as source for back colonization of the African mainland. Our study demonstrates the importance of complete taxon sampling and an extensive multimarker study design to obtain robust phylogeographical inferences.  相似文献   

10.
Two monophyletic sister species of wall lizards inhabit the two main groups of Balearic Islands: Podarcis lilfordi from islets and small islands around Mallorca and Menorca and Podarcis pityusensis from Ibiza, Formentera and associated islets. Genetic diversity within the endangered P. lilfordi has been well characterized, but P. pityusensis has not been studied in depth. Here, 2430 bp of mtDNA and 15 microsatellite loci were analysed from Ppityusensis populations from across its natural range. Two main genetic groupings were identified, although geographical structuring differed slightly between the mtDNA and the nuclear loci. In general, individuals from islets/islands adjacent to the main island of Ibiza were genetically distinct from those from Formentera and the associated Freus islands for both mtDNA and the nuclear loci. However, most individuals from the island of Ibiza were grouped with neighbouring islets/islands for nuclear loci, but with Formentera and Freus islands for the mitochondrial locus. A time‐calibrated Bayesian tree was constructed for the principal mitochondrial lineages within the Balearics, using the multispecies coalescent model, and provided statistical support for divergence of the two main Ppityusensis lineages 0.111–0.295 Ma. This suggests a mid‐late Pleistocene intraspecific divergence, compared with an early Pleistocene divergence in P. lilfordi, and postdates some major increases in sea level between 0.4 and 0.6 Ma, which may have flooded Formentera. The program IMa2 provided a posterior divergence time of 0.089–0.221 Ma, which was similar to the multispecies coalescent tree estimate. More significantly, it indicated low but asymmetric effective gene copy migration rates, with higher migration from Formentera to Ibiza populations. Our findings suggest that much of the present‐day diversity may have originated from a late Pleistocene colonization of one island group from the other, followed by allopatric divergence of these populations. Subsequent gene flow between these insular groups seems likely to be explained by recent human introductions. Two evolutionary significant units can be defined for P. pityusensis but these units would need to exclude the populations that have been the subjects of recent admixture.  相似文献   

11.
Island biodiversity has long fascinated biologists as it typically presents tractable systems for unpicking the eco‐evolutionary processes driving community assembly. In general, two recurring themes are of central theoretical interest. First, immigration, diversification, and extinction typically depend on island geographical properties (e.g., area, isolation, and age). Second, predictable ecological and evolutionary trajectories readily occur after colonization, such as the evolution of adaptive trait syndromes, trends toward specialization, adaptive radiation, and eventual ecological decline. Hypotheses such as the taxon cycle draw on several of these themes to posit particular constraints on colonization and subsequent eco‐evolutionary dynamics. However, it has been challenging to examine these integrated dynamics with traditional methods. Here, we combine phylogenomics, population genomics and phenomics, to unravel community assembly dynamics among Pheidole (Hymenoptera, Formicidae) ants in the isolated Fijian archipelago. We uphold basic island biogeographic predictions that isolated islands accumulate diversity primarily through in situ evolution rather than dispersal, and population genomic support for taxon cycle predictions that endemic species have decreased dispersal ability and demography relative to regionally widespread taxa. However, rather than trending toward island syndromes, ecomorphological diversification in Fiji was intense, filling much of the genus‐level global morphospace. Furthermore, while most endemic species exhibit demographic decline and reduced dispersal, we show that the archipelago is not an evolutionary dead‐end. Rather, several endemic species show signatures of population and range expansion, including a successful colonization to the Cook islands. These results shed light on the processes shaping island biotas and refine our understanding of island biogeographic theory.  相似文献   

12.
The current Irish biota has controversial origins. Ireland was largely covered by ice at the Last Glacial Maximum (LGM) and may not have had land connections to continental Europe and Britain thereafter. Given the potential difficulty for terrestrial species to colonize Ireland except by human introduction, we investigated the stoat (Mustela erminea) as a possible cold-tolerant model species for natural colonization of Ireland at the LGM itself. The stoat currently lives in Ireland and Britain and across much of the Holarctic region including the high Arctic. We studied mitochondrial DNA variation (1771 bp) over the whole geographical range of the stoat (186 individuals and 142 localities), but with particular emphasis on the British Isles and continental Europe. Irish stoats showed considerably greater nucleotide and haplotype diversity than those in Britain. Bayesian dating is consistent with an LGM colonization of Ireland and suggests that Britain was colonized later. This later colonization probably reflects a replacement event, which can explain why Irish and British stoats belong to different mitochondrial lineages as well as different morphologically defined subspecies. The molecular data strongly indicate that stoats colonized Ireland naturally and that their genetic variability reflects accumulation of mutations during a population expansion on the island.  相似文献   

13.
Aim Provide an empirical test of the ‘radiation zone’ hypothesis of the MacArthur–Wilson theory of island biogeography using the taxon‐pulse hypothesis of Erwin and Brooks Parsimony Analysis (BPA) on Simulium (Inseliellum) Rubstov. Location Micronesia, Cook Islands, Austral Islands, Society Islands, Marquesas Islands, Fiji and New Caledonia. Methods Primary and secondary BPA of the phylogeny of Inseliellum. Results Primary BPA showed that 15% of the taxon area cladogram contained area reticulations. Secondary BPA (invoking the area duplication convention) generated a clear sequence of dispersal for Inseliellum. The sequence follows a Micronesia – Cook Islands – Marquesas Islands – Society Islands dispersal, with a separate dispersal from the Cook Islands to the Austral Islands less than 1 Ma. A radiation in the island of Tahiti (Society Islands) produced numerous dispersals from Tahiti to other islands within the Society Islands system. Islands close to Tahiti (source island) have been colonized from Tahiti more often than islands far from Tahiti, but a higher proportion of those species colonizing distant islands have become distinct species. Main conclusions The dispersal sequence of Inseliellum exhibits both old to young island dispersal and young to old island dispersal. This is due to habitat availability on each island. Inseliellum is a model system in exemplifying the ‘radiation zone’ hypothesis of MacArthur and Wilson. As well, islands close to the source are colonized more often that those far from the source, but colonization of islands far away from the source results in a higher proportion of speciation events than for islands close to the source. The diversification of Inseliellum corresponds to a taxon‐pulse radiation, with a centre of diversification on Tahiti resulting from its large area and abundant freshwater habitats. This study illustrates the utility of BPA in identifying complex scenarios that can be used to test theories about the complementary roles of ecology and phylogeny in historical biogeography.  相似文献   

14.
Genetic and phylogenetic consequences of island biogeography   总被引:5,自引:0,他引:5  
Abstract.— Island biogeography theory predicts that the number of species on an island should increase with island size and decrease with island distance to the mainland. These predictions are generally well supported in comparative and experimental studies. These ecological, equilibrium predictions arise as a result of colonization and extinction processes. Because colonization and extinction are also important processes in evolution, we develop methods to test evolutionary predictions of island biogeography. We derive a population genetic model of island biogeography that incorporates island colonization, migration of individuals from the mainland, and extinction of island populations. The model provides a means of estimating the rates of migration and extinction from population genetic data. This model predicts that within an island population the distribution of genetic divergences with respect to the mainland source population should be bimodal, with much of the divergence dating to the colonization event. Across islands, this model predicts that populations on large islands should be on average more genetically divergent from mainland source populations than those on small islands. Likewise, populations on distant islands should be more divergent than those on close islands. Published observations of a larger proportion of endemic species on large and distant islands support these predictions.  相似文献   

15.
Island systems are important models for evolutionary biology because they provide convenient, discrete biogeographic units of study. Continental islands with a history of intermittent dry land connections confound the discrete definitions of islands and have led zoologists to predict (i) little differentiation of terrestrial organisms among continental shelf islands and (ii) extinction, rather than speciation, to be the main cause of differences in community composition among islands. However, few continental island systems have been subjected to well‐sampled phylogeographic studies, leaving these biogeographic assumptions of connectivity largely untested. We analysed nine unlinked loci from shrews of the genus Crocidura from seven mountains and two lowland localities on the Sundaic continental shelf islands of Sumatra and Java. Coalescent species delimitation strongly supported all currently recognized Crocidura species from Sumatra (six species) and Java (five species), as well as one undescribed species endemic to each island. We find that nearly all species of Crocidura in the region are endemic to a single island and several of these have their closest relative(s) on the same island. Intra‐island genetic divergence among allopatric, conspecific populations is often substantial, perhaps indicating species‐level diversity remains underestimated. One recent (Pleistocene) speciation event generated two morphologically distinct, syntopic species on Java, further highlighting the prevalence of within‐island diversification. Our results suggest that both between‐ and within‐island speciation processes generated local endemism in Sundaland, supplementing the traditional view that the region's fauna is relictual and primarily governed by extinction.  相似文献   

16.
Pandanus boninensis, endemic to the Ogasawara Islands, Japan, is distributed on both the older Bonin and younger Volcano Islands. In this study, we conducted population genetic analyses of P. boninensis on these islands to examine the population diversity and structure across old and young islands, to assess potential differences in population demography with island age, and to collect any evidence of migration between old and young islands. We found that the genetic diversity of expressed sequence tag (EST)–based microsatellite (SSR) markers, the nucleotide diversity of nuclear DNA sequences, and the haplotype diversity of chloroplast DNA on young islands were lower than those on old islands. Clustering analyses of EST‐SSR indicated that populations on old islands were strongly diverged from those on young islands. Approximate Bayesian computation analysis of EST‐SSR suggested that population expansion occurred on old islands while population reduction occurred on young islands. We also found evidence of migration among old islands (mostly from south to north), while it appears that there have been very few migration events between old and young islands. These differences could be due to the fact that young islands tend to be geographically isolated and support smaller populations that began a shorter time ago from limited founders. The P. boninensis populations on the Volcano Islands are interesting from an evolutionary perspective as they constitute a classic example of the early stages of progressive colonization on oceanic islands with small effective population sizes and low genetic diversity.  相似文献   

17.
The role of glacial refugia in shaping contemporary species distribution is a long-standing question in phylogeography and evolutionary ecology. Recent studies are questioning previous paradigms on glacial refugia and postglacial recolonization pathways in Europe, and more flexible phylogeographic scenarios have been proposed. We used the widespread common vole Microtus arvalis as a model to investigate the origin, locations of glacial refugia, and dispersal pathways, in the group of “Continental” species in Europe. We used a Bayesian spatiotemporal diffusion analysis (relaxed random walk model) of cytochrome b sequences across the species range, including newly collected individuals from 10 Iberian localities and published sequences from 68 localities across 22 European countries. Our data suggest that the species originated in Central Europe, and we revealed the location of multiple refugia (in both southern peninsulas and continental regions) for this continental model species. Our results confirm the monophyly of Iberian voles and the pre-LGM divergence between Iberian and European voles. We found evidence of restricted postglacial dispersal from refugia in Mediterranean peninsulas. We inferred a complex evolutionary and demographic history of M. arvalis in Europe over the last 50,000 years that does not adequately fit previous glacial refugial scenarios. The phylogeography of M. arvalis provides a paradigm of ice-age survival of a temperate continental species in western and eastern Mediterranean peninsulas (sources of endemism) and multiple continental regions (sources of postglacial spread). Our findings also provide support for a major role of large European river systems in shaping geographic boundaries of M. arvalis in Europe.  相似文献   

18.
Aim To describe the phylogeographic patterns of the black rat, Rattus rattus, from islands in the western Indian Ocean where the species has been introduced (Madagascar and the neighbouring islands of Réunion, Mayotte and Grande Comore), in comparison with the postulated source area (India). Location Western Indian Ocean: India, Arabian Peninsula, East Africa and the islands of Madagascar, Réunion, Grande Comore and Mayotte. Methods Mitochondrial DNA (cytochrome b, tRNA and D‐loop, 1762 bp) was sequenced for 71 individuals from 11 countries in the western Indian Ocean. A partial D‐loop (419 bp) was also sequenced for eight populations from Madagascar (97 individuals), which were analysed in addition to six previously published populations from southern Madagascar. Results Haplotypes from India and the Arabian Peninsula occupied a basal position in the phylogenetic tree, whereas those from islands were distributed in different monophyletic clusters: Madagascar grouped with Mayotte, while Réunion and Grand Comore were present in two other separate groups. The only exception was one individual from Madagascar (out of 190) carrying a haplotype that clustered with those from Réunion and South Africa. ‘Isolation with migration’ simulations favoured a model with no recurrent migration between Oman and Madagascar. Mismatch distribution analyses dated the expansion of Malagasy populations on a time‐scale compatible with human colonization history. Higher haplotype diversity and older expansion times were found on the east coast of Madagascar compared with the central highlands. Main conclusions Phylogeographic patterns supported the hypothesis of human‐mediated colonization of R. rattus from source populations in either the native area (India) or anciently colonized regions (the Arabian Peninsula) to islands of the western Indian Ocean. Despite their proximity, each island has a distinct colonization history. Independent colonization events may have occurred simultaneously in Madagascar and Grande Comore, whereas Mayotte would have been colonized from Madagascar. Réunion was colonized independently, presumably from Europe. Malagasy populations may have originated from a single successful colonization event, followed by rapid expansion, first in coastal zones and then in the central highlands. The congruence of the observed phylogeographic pattern with human colonization events and pathways supports the potential relevance of the black rat in tracing human history.  相似文献   

19.
Aim To test whether species richness of Sphagnum mosses on islands in a land uplift archipelago is related to island age, area or connectivity, and whether the frequency of different species can be predicted by their life history and autecology. Location The northern Stockholm archipelago in the Baltic Sea, east‐central Sweden, with a current land uplift rate of 4.4 mm year?1. Methods We sampled 17 islands differing in area (0.55–55 ha), height (3.6–18 m, representing c. 800–4000 years of age) and distance from mainland (1.6–41 km). For each Sphagnum patch we measured area, height above sea level, horizontal distance from the shore and shading from vascular plants. Factors affecting island species richness, species frequency and habitats on the islands were tested by stepwise regressions. Species frequency was tested on nine life history and autecological variables, including estimated abundance and spore output on the mainland, habitat preference and distribution. Results We recorded 500 patches of 19 Sphagnum species, distributed in 83 rock pools on 14 islands. Island species richness correlated positively with island area and with degree of shelter by surrounding islands, while distance from the mainland, connectivity, height or age did not add to the model. Species frequency (number of colonized islands and rock pools) was mainly predicted by spore output on the mainland and by habitat preference (swamp forest species were more frequent than others), while spore size, for example, did not add to the model. Species differed in mean height above and horizontal distance from the shore, area of occupied rock pools and in the degree of shading of patches. The mean horizontal distance from the shore and the area of occupied rock pools correlated positively with the normal growth position above the water table among species. Spore capsules were found in only 2% of patches, mostly in the bisexual Sphagnum fimbriatum. Main conclusions The presence of Sphagnum in the Stockholm archipelago seems to be governed by regional spore production and habitat demands. Sphagnum does not appear to be dispersal limited at distances up to 40 km and time spans of centuries. Species with a high regional spore output have had a higher colonization rate, which, together with the rarity of spore capsules on the islands, indicate the mainland as a source for colonization rather than dispersal among islands. Swamp forest species seem more tolerant to the island conditions (summer droughts and some salt spray) than open mire species. The different distances from the sea occupied by the species indicate a slow, continuous succession and species replacement towards the island interior as islands are being uplifted and thus expand in area. This partly explains why larger islands harbour more species. Our results thus support some of the island biogeographical theories related to the species–area relationship.  相似文献   

20.
Aim Colonization of the Philippines from Taiwan or neighbouring areas of the Asian mainland has been proposed as an important source of diversity for some plant and animal groups in the northern Philippines. Previous inferences, however, were based on taxonomic groupings, which sometimes fail to reflect phylogenetic history. Here, we test for colonization of the Philippines from the north in a group of shrews (Soricomorpha: Crocidura) using explicit inferences of evolutionary history. Location Southeast Asia. Methods We estimate the phylogenetic relationships of populations of shrews from Batan and Sabtang islands in the northern Philippines using DNA sequences from two mitochondrial genes and three nuclear loci. We employ topology tests to evaluate the possible relationships of these shrews to species from throughout Southeast Asia. Results We find conclusive evidence that shrews from Batan and Sabtang are closely related to Crocidura tanakae from Taiwan and additional specimens from the Asian mainland. Bayesian and frequentist topology tests using alignments of individual loci strongly reject any notion that shrews from Batan and Sabtang are part of the main Philippine radiation of Crocidura, indicating that the northernmost Philippine islands were almost certainly colonized by shrews from Taiwan or mainland Asia. Main conclusions Our results provide the first compelling evidence for colonization of the Philippine archipelago by a terrestrial vertebrate via a northern route. Invasion of the northern Philippines by shrews, however, did not lead to further range expansion to more southerly parts of the Philippines. This study, combined with previous results, documents that Crocidura colonized the Philippines at least three times. However, only one of these invasions led to in situ speciation and ubiquity across the archipelago. Our findings are part of a growing body of literature suggesting that oceanic archipelagos are often colonized multiple times by groups of closely related species, and occasionally from multiple sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号