首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Aim We examined phytogeographical patterns of West Indian orchids, and related island area and maximum elevation with orchid species richness and endemism. We expected strong species–area relationships, but that these would differ between low and montane island groups. In so far as maximum island elevation is a surrogate for habitat diversity, we anticipated a strong relationship with maximum elevation and both species richness and endemism for montane islands. Location The West Indies. Methods Our data included 49 islands and 728 species. Islands were classified as either montane (≥ 300 m elevation) or low (< 300 m). Linear and multivariate regression analyses were run to detect relationships between either area or maximum island elevation and species richness or the number of island endemic species. Results For all 49 islands, the species–area relationship was strong, producing a z‐value of 0.47 (slope of the regression line) and explaining 46% of the variation. For 18 relatively homogeneous, low islands we found a non‐significant slope of z = −0.01 that explained only 0.1% of the variation. The 31 montane islands had a highly significant species–area relationship, with z = 0.49 and accounting for 65% of the variation. Species numbers were also strongly related to maximum island elevation. For all islands < 750 km2, we found a small‐island effect, which reduced the species–area relationship to a non‐significant z = 0.16, with only 5% of the variation explained by the model. Species–area relationships for montane islands of at least 750 km2 were strong and significant, but maximum elevation was the best predictor of species richness and accounted for 79% of the variation. The frequency of single‐island endemics was high (42%) but nearly all occurred on just nine montane islands (300 species). The taxonomic distribution of endemics was also skewed, suggesting that seed dispersability, while remarkable in some taxa, is very limited in others. Montane island endemics showed strong species–area and species–elevation relationships. Main conclusions Area and elevation are good predictors of orchid species diversity and endemism in the West Indies, but these associations are driven by the extraordinarily strong relationships of large, montane islands. The species richness of low islands showed no significant relationship with either variable. A small‐island effect exists, but the montane islands had a significant relationship between species diversity and maximum elevation. Thus, patterns of Caribbean orchid diversity are dependent on an interplay between area and topographic diversity.  相似文献   

2.
L. Yiming  J. Niemelä  L. Dianmo 《Oecologia》1998,113(4):557-564
Because of their poor dispersal ability, amphibians are well suited for testing the selective extinction theory on islands. Amphibian fauna in the Zhoushan archipelago, China, exhibit a high level of nestedness (C = 0.893), and the species number is lower on islands than on similar sized areas on the mainland. No correlation was found between island-specific species richness and the nearest distance from a larger island, distance from the mainland or density of human population. These results suggest that no amphibian colonisation has occurred in the archipelago since island isolation 7000–9000 years ago. Furthermore, the results imply that selective extinction contributes to the nestedness of amphibians in the Zhoushan archipelago. The incidence of a species on the islands is significantly correlated with log area of the smallest island occupied by the species and the number of provinces on the Chinese mainland in which the species occur. However, there is no correlation with average body length of adults and island occurrence. It is concluded that (1) the area of the smallest island occupied by a species is a good estimate of the minimum area for a viable population of the species and a good predictor of species incidence on islands, (2) species with a restricted distribution range are more vulnerable to extinction from islands than those with a wide distribution range and (3) the effect of body size on occurrence on the islands is uncertain, and may be specific to the archipelago and taxa studied. The observed nestedness of amphibian assemblages has two implications for conservation: (1) not only can all the species found in several small reserves be found on a large reserve of the same total size, but additional species can be found on the single large reserve; (2) for a reserve to maintain viable populations of all species in a region it should be at least as large as the smallest island occupied by the most vulnerable species. Received: 16 December 1996 / Accepted: 22 September 1997  相似文献   

3.
We examined the relationship between plant species richness and biogeographical variables (island area, island maximum elevation, distance from nearest inhabited island, distance from nearest mainland) using a data set comprising 201 islands of the Aegean archipelago. We found that endemic species richness was strongly correlated to total species richness. Single-island endemic species richness was most strongly correlated to island maximum elevation, and then to island area, with an apparent small island effect for islands smaller than 47 km2. Total species richness was most strongly correlated to island area (with no apparent small island effect), and less strongly correlated to island maximum elevation. Distance from the mainland or other inhabited islands displayed limited predictive value in our data set. The slope of the relationship between species richness and geographical factors (island area, elevation, distance from island/mainland) was steeper for endemic species richness than for total richness. Finally, the different scales of endemicity (single-island endemics, island group endemics and Aegean regional endemics) displayed similar qualitative trends and only differed quantitatively. Thus, we conclude that different biogeographical factors act as drivers for total species richness than for endemic species richness.  相似文献   

4.
Aim To investigate species compositions, rates of species turnover, species–area and species–distance relationships and patterns of nestedness in the floras of small Bahamian islands, by comparing two groups of islands that had been differentially affected by two hurricanes. Location Small islands occurring on either side of Great Exuma near Georgetown, Bahamas. Methods We surveyed the plant species of 44 small islands over a 5‐year period from 1998 to 2002. Hurricanes Lili and Michelle occurred in 1996 and 2001, respectively; both storms affected small islands on the more exposed south‐west side of Great Exuma to a greater degree than small islands on the more protected north‐east side. A set of 27 islands was surveyed in 1998 and 2002 to evaluate species turnover. Stepwise multiple linear regression analyses and an information‐theoretic approach (the Akaike information criterion) were used to elucidate the importance of area and distance as predictors of plant species number. We compared a piecewise linear regression model with a simple linear regression of species number against area to determine whether a small island effect existed. Nestedness patterns were evaluated by Wilcoxon two‐sample tests to analyse occurrence sequences. Results Species turnover was low in an absolute sense (overall = 0.74% year?1), yet was over three times higher than that documented in a nearby archipelago in the absence of hurricanes. Both vegetated area and distance were important predictor variables for exposed islands but not for protected islands. Some support was found for a small island effect for the exposed islands based on a piecewise linear regression model. Both island groups revealed significant nestedness at the level of the assemblage (both P < 0.001). On exposed islands, 65–79% (depending upon the method of calculation) of all species were significantly nested, but only 47% of all species were significantly nested on protected islands. Main conclusions Overall, these insular floras seem highly resistant to hurricane‐force disturbances. Species turnover was low (< 1% year?1) in an absolute sense, particularly in comparison with rates for other taxa. Higher degrees of nestedness and significant species–area and species–distance relationships for exposed islands indicated stronger patterns of community assembly. It is likely that disturbance is a major structuring force for the exposed islands, although the type of disturbances that mediate these patterns may not be primarily hurricane‐force storms.  相似文献   

5.
To evaluate the risk of transmission of vector‐borne diseases, regular updates of the geographic distribution of insect vectors are required. In the archipelago of Cape Verde, nine mosquito species have been reported. Of these, four are major vectors of diseases that have been present in the archipelago: yellow fever, lymphatic filariasis, malaria and, currently, an outbreak of dengue. In order to assess variation in mosquito biodiversity, we have carried out an update on the distribution of the mosquito species in Cape Verde, based on an enquiry of 26 unpublished technical reports (1983–2006) and on the results of an entomological survey carried out in 2007. Overall, there seems to be a general trend for an expansion of biological diversity in the islands. Mosquito species richness was negatively correlated with the distance of the islands from the mainland but not with the size of the islands. Human‐ and/or sporadic climatic‐mediated events of dispersal may have contributed to a homogenization of species richness regardless of island size but other ecological factors may also have affected the mosquito biogeography in the archipelago. An additional species, Culex perexiguus, was collected for the first time in the archipelago during the 2007 survey.  相似文献   

6.
Aim This study aims to explain the patterns of species richness and nestedness of a terrestrial bird community in a poorly studied region. Location Twenty‐six islands in the Dahlak Archipelago, Southern Red Sea, Eritrea. Methods The islands and five mainland areas were censused in summer 1999 and winter 2001. To study the importance of island size, isolation from the mainland and inter‐island distance, I used constrained null models for the nestedness temperature calculator and a cluster analysis. Results Species richness depended on island area and isolation from the mainland. Nestedness was detected, even when passive sampling was accounted for. The nested rank of islands was correlated with area and species richness, but not with isolation. Idiosyncrasies appeared among species‐poor and species‐rich islands, and among common and rare species. Cluster analysis showed differences among species‐rich islands, close similarity among species‐poor and idiosyncratic islands, and that the compositional similarity among islands decreased with increasing inter‐island distance. Thus, faunas of species‐poor, smaller islands were more likely to be subsets of faunas of species‐rich, larger islands if the distance between the islands was short. Main conclusions Species richness and nestedness were related to island area, and nestedness also to inter‐island distances but not to isolation from the mainland. Thus, nestedness and species richness are not affected in the same way by area and distance. Moreover, idiosyncrasies may have been the outcome of species distributions among islands being influenced also by non‐nested distributions of habitats, inter–specific interactions, and differences in species distributions across the mainland. Idiosyncrasies in nested patterns may be as important as the nested pattern itself for conservation – and conservation strategies based on nestedness and strong area effects (e.g. protection of only larger islands) may fail to preserve idiosyncratic species/habitats.  相似文献   

7.
The island biogeography theory is one of the major theories in ecology, and its applicability to natural systems is well documented. The core model of the theory, the equilibrium model of island biogeography, predicts that species diversity on an island is positively related to the size of the island, but negatively related by the island's distance to the mainland. In recent years, ecologists have begun to apply this model when investigating genetic diversity, arguing that genetic and species diversity might be influenced by similar ecological processes. However, most studies have focused on oceanic islands, but knowledge on how the theory applies to islands located on the mainland (e.g., mountain islands, forest islands) is scarce. In this study, we examined how the size and degree of isolation of mountain islands would affect the genetic diversity of an alpine bird, the rock ptarmigan (Lagopus muta). Within our study area, we defined the largest contiguous mountain area as the mainland, while smaller mountains surrounding the mainland were defined as islands. We found that the observed heterozygosity (Ho) was significantly higher, and the inbreeding coefficient (Fis) significantly lower, on the mainland compared to islands. There was a positive significant relationship between the unbiased expected heterozygosity (Hn.b.) and island size (log km2), but a negative significant relationship between Ho and the cost distance to the mainland. Our results are consistent with the equilibrium model of island biogeography and show that the model is well suited for investigating genetic diversity among islands, but also on islands located on the mainland.  相似文献   

8.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

9.
Aim To investigate and establish the significance of various island biogeographic relationships (geographical, ecological and anthropological) with the species richness of introduced mammals on offshore islands. Location The 297 offshore islands of the New Zealand archipelago (latitude: 34–47°S; longitude: 166–179°E). Methods Data on New Zealand offshore islands and the introduced mammals on them were collated from published surveys and maps. The species richness of small and large introduced mammals were calculated for islands with complete censuses and regressed on island characteristics using a Poisson distributed error generalized linear model. To estimate the ‘z‐value’ for introduced mammals on New Zealand islands, least‐squares regression was used [log10 S vs. log10 A]. Results High collinearity was found between the area, habitat diversity and elevation of islands. The island characteristics related to the species richness of introduced mammals differed predictably between large and small mammals. The species richness of introduced large mammals was mostly related to human activities on islands, whereas species richness of introduced small mammals was mostly related to island biogeographical parameters. The ‘z‐value’ for total species richness is found to be expectedly low for introduced mammals. Main conclusions Distance appears to have become ecologically trivial as a filter for introduced mammal presence on New Zealand offshore islands. There is strong evidence of a ‘small island’ effect on New Zealand offshore islands. The species richness of both small and large introduced mammals on these islands appears to be most predominantly related to human use, although there is some evidence of natural dispersal for smaller species. The ecological complexity of some islands appears to make them less invasible to introduced mammals. Some human activities have an interactive effect on species richness. A small number of islands have outlying species richness values above what the models predict, suggesting that the presence of some species may be related to events not accounted for in the models.  相似文献   

10.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units.  相似文献   

11.
While patterns of spore dispersal from single sources at short distances are fairly well known, information about ‘spore rain’ from numerous sources and at larger spatial scales is generally lacking. In this study, I sampled spore rain using a novel method consisting of 0.25–0.5 m2 cotton cloth traps at nine sites in the boreo‐nemoral vegetation zone in eastern Sweden during two seasons, using Sphagnum spores as a model. Traps were located in various landscapes (mainland, islands). Additional trapping was done in an arctic area (Svalbard) without spore production. Spore densities were tested against distance from the nearest source and area of sources (open peatlands) within different radii around each site (5, 10, 20, 50, 100, 200, 300, 400 km). The cloth method appeared reliable when accounting for precipitation losses, retaining approximately 20–60% of the spores under the recorded amounts of precipitation. Estimated spore densities ranged from 6 million m?2 and season within a large area source, via regional deposition of 50 000–240 000 spores m?2, down to 1000 m?2 at Svalbard. Spore rain for all sites was strongly related to distance from the nearest source, but when excluding samples taken within a source peatland, the amount of sources within 200 km was most important. Spores were larger at isolated island sites, indicating that a higher proportion originated from distant, humid areas. Immense amounts of Sphagnum spores are dispersed across regional distances annually in boreal areas, explaining the success of the genus to colonise nutrient poor wetlands. The detectable deposition at Svalbard indicates that about 1% of the regional spore rain has a trans‐ or intercontinental origin. The regional spore rain, originating from numerous sources in the landscape, is probably valid for most organisms with small diaspores and provides a useful insight in ecology, habitat restoration and conservation planning.  相似文献   

12.
Aim Predator–prey dynamics in fragmented areas may be influenced by spatial features of the landscape. Although little is known about these processes, an increasingly fragmented planet underscores the urgency to predict its consequences. Accordingly, our aim was to examine foraging behaviour of an apex mammalian predator, the wolf (Canis lupus), in an archipelago environment. Location Mainland and adjacent archipelago of British Columbia, Canada; a largely pristine and naturally fragmented landscape with islands of variable size and isolation. Methods We sampled 30 mainland watersheds and 29 islands for wolf faeces in summers 2000 and 2001 and identified prey remains. We examined broad geographical patterns and detailed biogeographical variables (area and isolation metrics) as they relate to prey consumed. For island data, we used Akaike Information Criteria to guide generalized linear regression model selection to predict probability of black‐tailed deer (main prey; Odocoileus hemionus) in faeces. Results Black‐tailed deer was the most common item in occurrence per faeces (63%) and occurrence per item (53%) indices, representing about 63% of mammalian biomass. Wolves consumed more deer on islands near the mainland (65% occurrence per item) than on the mainland (39%) and outer islands (45%), where other ungulates (mainland only) and small mammals replaced deer. On islands, the probability of detecting deer was influenced primarily by island distance to mainland (not by area or inter‐landmass distance), suggesting limited recolonization by deer from source populations as a causal mechanism. Main conclusions Although sampling was limited in time, consistent patterns among islands suggest that population dynamics in isolated fragments are less stable and can result in depletion of prey. This may have important implications in understanding predator–prey communities in isolation, debate regarding wolf–deer systems and logging in temperate rain forests, and reserve design.  相似文献   

13.
Aim To study the effects of isolation and size of small tropical islands on species assemblages of bees (superfamily Apoidea) and wasps (superfamily Vespoidea). Location Twenty islands in the Kepulauan Seribu Archipelago off the coast of west Java, Indonesia. The size of surveyed islands ranges between 0.75 and 41.32 ha; their distance from the coast of Java varies between 3 and 62 km. Methods Field work was conducted from February to May 2005. Bees and wasps were caught with a sweep net during sampling units of 15 min, continuing until four consecutive samples revealed no new species. Total species richness was quantified by the estimators Chao 2, first‐order jackknife and Michaelis–Menten. The software binmatnest was used to test for nestedness of species assemblages. Similarities of species composition between islands were quantified by Sørensen’s similarity index. Results Eighty‐two species were recorded on the 20 surveyed islands. Species richness declined with increasing isolation of islands from the source area, Java. Although the size of the largest island exceeded that of the smallest island by a factor of almost 60, island size only very weakly affected species richness of bees; no effect of island size was found for wasps. Mean body size of species decreased with increasing island isolation. Nestedness of island faunas was only weakly developed. Species composition of both superfamilies was affected by island isolation, but not by island size. Main conclusions While the species–isolation relationship on the very small islands of Kepulauan Seribu followed the prediction of MacArthur and Wilson’s equilibrium theory, the absence of a species–area relationship indicated a weak ‘small‐island effect’, at least in wasps. The combination of an only weakly developed pattern of nested species subsets, the shift in species compositions and the decline of mean body size with increasing island isolation from the source area indicates that biotic interactions and different species traits contribute to the shaping of communities of bees and wasps within the archipelago. The potential of biotic interactions for generating distribution patterns of species within the archipelago is also emphasized by the observed restriction of some species with apparently high dispersal abilities to outer islands.  相似文献   

14.
Aim To test the performance of the choros model in an archipelago using two measures of environmental heterogeneity. The choros model is a simple, easy‐to‐use mathematical relationship which approaches species richness as a combined function of area and environmental heterogeneity. Location The archipelago of Skyros in the central Aegean Sea (Greece). Methods We surveyed land snails on 12 islands of the archipelago. We informed the choros model with habitat data based on natural history information from the land snail species assemblage. We contrast this with habitat information taken from traditional vegetation classification to study the behaviour of choros with different measures of environmental heterogeneity. R2 values and Akaike's information criterion (AIC) were used to compare the choros model and the Arrhenius species–area model. Path analysis was used to evaluate the variance in species richness explained by area and habitat diversity. Results Forty‐two land snail species were recorded, living in 33 different habitat types. The choros model with habitat types had more explanatory power than the classic species–area model and the choros model using vegetation types. This was true for all islands of the archipelago, as well as for the small islands alone. Combined effects of area and habitat diversity primarily explain species richness in the archipelago, but there is a decline when only small islands are considered. The effects of area are very low both for all the islands of the archipelago, and for the small islands alone. The variance explained by habitat diversity is low for the island group as a whole, but significantly increases for the small islands. Main conclusions The choros model is effective in describing species‐richness patterns of land snails in the Skyros Archipelago, incorporating ecologically relevant information on habitat occupancy and area. The choros model is more effective in explaining richness patterns on small islands. When using traditional vegetation types, the choros model performs worse than the classic species–area relationship, indicating that use of proxies for habitat diversity may be problematic. The slopes for choros and Arrhenius models both assert that, for land snails, the Skyros Archipelago is a portion of a larger biogeographical province. The choros model, informed by ecologically relevant habitat measures, in conjunction with path analysis points to the importance of habitat diversity in island species richness.  相似文献   

15.
Aim The aim of this study is to explore the interrelationships between island area, species number and habitat diversity in two archipelago areas. Location The study areas, Brunskär and Getskär, are located in an archipelago in south‐western Finland. Methods The study areas, 82 islands in Brunskär and 78 in Getskär, were classified into nine habitat types based on land cover. In the Brunskär area, the flora (351 species) was surveyed separately for each individual habitat on the islands. In the Getskär area, the flora (302 species) was surveyed on a whole‐island basis. We used standard techniques to analyse the species–area relationship on a whole‐island and a habitat level. We also tested our data for the small island effect (SIE) using breakpoint and path analysis models. Results Species richness was significantly associated with both island area and habitat diversity. Vegetated area in particular, defined as island area with the rock habitat subtracted, proved to be a strong predictor of species richness. Species number had a greater association with island area multiplied by the number of habitats than with island area or habitat number separately. The tests for a SIE in the species–area relationship showed the existence of a SIE in one of the island groups. No SIE could be detected for the species–vegetated area relationship in either of the island groups. The strength of the species–area relationship differed considerably between the habitats. Main conclusions The general principles of island biogeography apply well to the 160 islands in this study. Vascular plant diversity for small islands is strongly influenced by physiographic factors. For the small islands with thin and varying soil cover, vegetated area was the most powerful predictor of species richness. The species–area curves of various habitats showed large variations, suggesting that the measurement of habitat areas and establishment of habitat‐based species lists are needed to better understand species richness on islands. We found some evidence of a SIE, but it is debatable whether this is a ‘true’ SIE or a soil cover/habitat characteristics feature.  相似文献   

16.
17.
Aim To establish the extent to which archipelagos follow the same species–area relationship as their constituent islands and to explore the factors that may explain departures from the relationship. Location Thirty‐eight archipelagos distributed worldwide. Methods We used ninety‐seven published datasets to create island species–area relationships (ISARs) using the Arrhenius logarithmic form of the power model. Observed and predicted species richness of an archipelago and of each of its islands were used to calculate two indices that determined whether the archipelago followed the ISAR. Archipelagic residuals (ArcRes) were calculated as the residual of the prediction provided by the ISAR using the total area of the archipelago, standardized by the total richness observed in the archipelago. We also tested whether any characteristic of the archipelago (geological origin and isolation) and/or taxon accounts for whether an archipelago fits into the ISAR or not. Finally, we explored the relationship between ArcRes and two metrics of nestedness. Results The archipelago was close to the ISAR of its constituent islands in most of the cases analysed. Exceptions arose for archipelagos where (i) the slopes of the ISAR are low, (ii) observed species richness is higher than expected by the ISAR and/or (iii) distance to the mainland is small. The archipelago's geological origin was also important; a higher percentage of oceanic archipelagos fit into their ISAR than continental ones. ArcRes indicated that the ISAR underpredicts archipelagic richness in the least isolated archipelagos. Different types of taxon showed no differences in ArcRes. Nestedness and ArcRes appear to be related, although the form of the relationship varies between metrics. Main conclusions Archipelagos, as a rule, follow the same ISAR as their constituent islands. Therefore, they can be used as distinct units themselves in large‐scale biogeographical and macroecological studies. Departure from the ISAR can be used as a crude indicator of richness‐ordered nestedness, responsive to factors such as isolation, environmental heterogeneity, number and age of islands.  相似文献   

18.
Aim Islands are widely considered to be species depauperate relative to mainlands but, somewhat paradoxically, are also host to many striking adaptive radiations. Here, focusing on Anolis lizards, we investigate if cladogenetic processes can reconcile these observations by determining if in situ speciation can reduce, or even reverse, the classical island–mainland richness discrepancy. Location Caribbean islands and the Neotropical mainland. Methods We constructed range maps for 203 mainland anoles from museum records and evaluated whether geographical area could account for differences in species richness between island and mainland anole faunas. We compared the island species–area relationship with total mainland anole diversity and with the richness of island‐sized mainland areas. We evaluated the role of climate in the observed differences by using Bayesian model averaging to predict island richness based on the mainland climate–richness relationship. Lastly, we used a published phylogeny and stochastic mapping of ancestral states to determine if speciation rate was greater on islands, after accounting for differences in geographical area. Results Islands dominated by in situ speciation had, on average, significantly more species than similarly sized mainland regions, but islands where in situ speciation has not occurred were species depauperate relative to mainland areas. Results were similar at the scale of the entire mainland, although marginally non‐significant. These findings held even after accounting for climate. Speciation has not been faster on islands; instead, when extinction was assumed to be low, speciation rate varied consistently with geographical area. When extinction was high, there was some evidence that mainland speciation was faster than expected based on area. Main conclusions Our results indicate that evolutionary assembly of island faunas can reverse the general pattern of reduced species richness on islands relative to mainlands.  相似文献   

19.
Aim To understand factors that facilitate insular colonization by black flies, we tested six hypotheses related to life‐history traits, phylogeny, symbiotes, island area, and distance from source areas. Location Four northern islands, all within 150 km of the North American mainland, were included in the study: Isle Royale, Magdalen Islands, Prince Edward Island, and Queen Charlotte Islands. Methods Immature black flies and their symbiotes were surveyed in streams on the Magdalen Islands, and the results combined with data from similar surveys on Isle Royale, Prince Edward Island, and the Queen Charlotte Islands. Black flies were analysed chromosomally to ensure that all sibling species were revealed. Tests of independence were used to examine the frequency of life‐history traits and generic representation of black flies on islands vs. source areas. Results A total of 13–20 species was found on each of the islands, but no species was unique to any of the islands. The simuliid faunas of the islands reflected the composition of their source areas in aspects of voltinism (univoltine vs. multivoltine), blood feeding (ornithophily vs. mammalophily), and phylogeny (genus Simulium vs. other genera). Five symbiotic species were found on the most distant island group, the Magdalen Islands, supporting the hypothesis that obligate symbiotes are effectively transported to near‐mainland islands. An inverse relationship existed between the number of species per island and distance from the source. The Queen Charlotte Islands did not conform to the species–area relationship. Main conclusions The lack of precinctive insular species and an absence of life‐history and phylogenetic characteristics related to the presence of black flies on these islands argue for gene flow and dispersal capabilities of black flies over open waters, possibly aided by winds. However, the high frequency of precinctive species on islands 500 km or more from the nearest mainland indicates that at some distance beyond 100 km, open water provides a significant barrier to colonization and gene exchange. An inverse relationship between number of species and distance from the source suggests that as long as suitable habitat is present, distance plays an important role in colonization. Failure of the Queen Charlotte Islands to conform to an area–richness trend suggests that not all resident species have been found.  相似文献   

20.
  • 1 For over three decades the equilibrium theory of island biogeography has galvanized studies in ecological biogeography. Studies of oceanic islands and of natural habitat islands share some similarities to continental studies, particularly in developed regions where habitat fragmentation results from many land uses. Increasingly, remnant habitat is in the form of isolates created by the clearing and destruction of natural areas. Future evolution of a theory to predict patterns of species abundance may well come from the application of island biogeography to habitat fragments or isolates.
  • 2 In this paper we consider four factors other than area and isolation that influence the number and type of mammal species coexisting in one place: habitat diversity, habitat disturbance, species interactions and guild assembly rules. In all examples our data derive from mainland habitat, fragmented to differing degrees, with different levels of isolation.
  • 3 Habitat diversity is seen to be a good predictor of species richness. Increased levels of disturbance produce a relatively greater decrease in species richness on smaller than on larger isolates. Species interactions in the recolonization of highly disturbed sites, such as regenerating mined sites, is analogous to island colonization. Species replacement sequences in secondary successions indicate not just how many, but which species are included. Lastly, the complement of species established on islands, or in insular habitats, may be governed by guild assembly rules. These contributions may assist in taking a renewed theory into the new millennium.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号