首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The theory of island biogeography is most often studied in the context of oceanic islands where all island inhabitants are descendants from founding events involving migration from mainland source populations. Far fewer studies have considered predictions of island biogeography in the case of continental islands, where island formation typically splits continuous populations and thus vicariance also contributes to the diversity of island populations. We examined one such case on continental islands in southeastern Brazil, to determine how classic island biogeography predictions and past vicariance explain the population genetic diversity of Thoropa taophora, a frog endemic to the Atlantic Coastal Forest. We used nuclear microsatellite markers to examine the genetic diversity of coastal and island populations of this species. We found that island isolation has a role in shaping the genetic diversity of continental island species, with island populations being significantly less diverse than coastal populations. However, area of the island and distance from coast had no significant effect on genetic diversity. We also found no significant differences between migration among coastal populations and migration to and from islands. We discuss how vicariance and the effects of continued migration between coastal and island populations interact to shape evolutionary patterns on continental islands.  相似文献   

2.
Islands acquire species through immigration and speciation. Models of island biogeography should capture both processes; however quantitative island biogeography theory has either neglected speciation or treated it unrealistically. We introduce a model where the dominance of immigration on small and near islands gives way to an increasing role for speciation as island area and isolation increase. We examine the contribution of immigration and speciation to the avifauna of 35 archipelagoes and find, consistent with our model, that the zone of radiation comprises two regions: endemic species diverged from mainland sister-species at intermediate isolation and from insular sister-species at higher levels of isolation. Our model also predicts species-area curves in accord with existing research and makes new predictions about species ages and abundances. We argue that a paucity of data and theory on species abundances on isolated islands highlights the need for island biogeography to be reconnected with mainstream ecology.  相似文献   

3.
The classical theory of island biogeography has as its basic variable the presence or absence of species on entire islands, and as its basic processes colonization and extinction rates on entire islands as functions of island area, distance, and so forth. Yet for many organisms with limited dispersal abilities, it may be more reasonable to consider larger islands as comprised of an ensemble of local populations coupled by within-island dispersal. Conceptual arguments and a simple patch occupancy model are used to examine the potential relevance of such internal spatial dynamics in explaining area effects, expressed via the probability that a species is present per unit area as a function of total island area. The model suggests that strong area effects depend on a rather fine balance between local colonization and extinction rates. A fruitful direction of future research should be the application of patch dynamic theory to classic island biogeographic questions and systems.  相似文献   

4.
海洋岛屿生物多样性保育研究进展   总被引:6,自引:0,他引:6  
海洋岛屿生态系统因具有明显的海域地理隔离而区别于陆地生态系统,被誉为生物地理与进化生态学研究的"天然实验室".陆地或其它邻近岛屿的种源物种迁移到新的岛屿后,经历地理隔离、特征置换或适应辐射等一系列的岛屿进化过程,形成与种源物种具有显著遗传差异的岛屿特有种.岛屿在小面积范围内分化形成大量的特有种,是岛屿生物多样性最为重要的特点之一.但是,岛屿种群由于分布范围局限、生境脆弱且种群规模较小,岛屿种群较陆地种群具有更高的灭绝风险.本文通过对海洋岛屿物种的起源与演化、遗传结构以及岛屿物种的濒危与保护3个热点问题的讨论,阐述岛屿生物多样性的形成机制、濒危肇因以及岛屿生物多样性保育的重要性.  相似文献   

5.
White TA  Searle JB 《Molecular ecology》2007,16(10):2005-2016
Populations of many species are currently being fragmented and reduced by human interactions. These processes will tend to reduce genetic diversity within populations and reduce individual heterozygosities because of genetic drift, inbreeding and reduced migration. Conservation biologists need to know the effect of population size on genetic diversity, as this is likely to influence a population's ability to persist. Island populations represent an ideal natural experiment with which to study this problem. In a study of common shrews (Sorex araneus) on offshore Scottish islands, 497 individuals from 13 islands of different sizes and 6 regions on the mainland were trapped and genotyped at eight microsatellite loci. Previous genetic work had revealed that most of the islands in this study were highly genetically divergent from one another and the mainland. We found that most of the islands exhibited lower genetic diversity than the mainland populations. In the island populations, mean expected heterozygosity, mean observed heterozygosity and mean allelic richness were significantly positively correlated with log island size and log population size, which were estimated using habitat population density data and application of a Geographic Information System.  相似文献   

6.
Understanding patterns of diversity can be furthered by analysis of the dynamics of colonization, speciation, and extinction on islands using historical information provided by molecular phylogeography. The land birds of the Lesser Antilles are one of the most thoroughly described regional faunas in this context. In an analysis of colonization times, Ricklefs and Bermingham (2001) found that the cumulative distribution of lineages with respect to increasing time since colonization exhibits a striking change in slope at a genetic distance of about 2% mitochondrial DNA sequence divergence (about one million years). They further showed how this heterogeneity could be explained by either an abrupt increase in colonization rates or a mass extinction event. Cherry et al. (2002), referring to a model developed by Johnson et al. (2000), argued instead that the pattern resulted from a speciation threshold for reproductive isolation of island populations from their continental source populations. Prior to this threshold, genetic divergence is slowed by migration from the source, and species of varying age accumulate at a low genetic distance. After the threshold is reached, source and island populations diverge more rapidly, creating heterogeneity in the distribution of apparent ages of island taxa. We simulated of Johnson et al.'s speciation-threshold model, incorporating genetic divergence at rate k and fixation at rate M of genes that have migrated between the source and the island population. Fixation resets the divergence clock to zero. The speciation-threshold model fits the distribution of divergence times of Lesser Antillean birds well with biologically plausible parameter estimates. Application of the model to the Hawaiian avifauna, which does not exhibit marked heterogeneity of genetic divergence, and the West Indian herpetofauna, which does, required unreasonably high migration-fixation rates, several orders of magnitude greater than the colonization rate. However, the plausibility of the speciation-divergence model for Lesser Antillean birds emphasizes the importance of further investigation of historical biogeography on a regional scale for whole biotas, as well as the migration of genes between populations on long time scales and the achievement of reproductive isolation.  相似文献   

7.
J.W. Fox 《Oikos》2006,113(2):376-382
Local species richness frequently is linearly related to the richness of the regional species pool from which the local community was presumably assembled. What, if anything, does this pattern imply about the relative importance of species interactions and dispersal as determinants of local species richness? Two recent papers by Hugueny and Cornell and He et al. propose that the classical island biogeography model of MacArthur and Wilson can help answer this question, by serving as a null model of the relationship between local (island) and regional (mainland) species richness in the absence of local species interactions. The two models make very different predictions, despite being derived from apparently‐similar assumptions. Here we reinterpret these two models and show that their contrasting predictions can be regarded as arising from different, implicit assumptions about how species abundances vary with species richness on the mainland. We derive a more general island biogeography model of local–regional richness relationships that explicitly incorporates mainland species abundance and subsumes the two previous models as limiting cases. The new model predicts that the local–regional richness relationship can range from nearly linear to strongly curvilinear, depending on how species abundances on the mainland vary with mainland richness, as well as on rates of immigration to and extinction from islands. Local species interactions are not necessary for producing curvilinear local–regional richness relationships. We discuss the implications of our new model for the interpretation of local–regional richness relationships.  相似文献   

8.
The island biogeography theory is one of the major theories in ecology, and its applicability to natural systems is well documented. The core model of the theory, the equilibrium model of island biogeography, predicts that species diversity on an island is positively related to the size of the island, but negatively related by the island's distance to the mainland. In recent years, ecologists have begun to apply this model when investigating genetic diversity, arguing that genetic and species diversity might be influenced by similar ecological processes. However, most studies have focused on oceanic islands, but knowledge on how the theory applies to islands located on the mainland (e.g., mountain islands, forest islands) is scarce. In this study, we examined how the size and degree of isolation of mountain islands would affect the genetic diversity of an alpine bird, the rock ptarmigan (Lagopus muta). Within our study area, we defined the largest contiguous mountain area as the mainland, while smaller mountains surrounding the mainland were defined as islands. We found that the observed heterozygosity (Ho) was significantly higher, and the inbreeding coefficient (Fis) significantly lower, on the mainland compared to islands. There was a positive significant relationship between the unbiased expected heterozygosity (Hn.b.) and island size (log km2), but a negative significant relationship between Ho and the cost distance to the mainland. Our results are consistent with the equilibrium model of island biogeography and show that the model is well suited for investigating genetic diversity among islands, but also on islands located on the mainland.  相似文献   

9.
A model of extinction probability, based on the general theory of island biogeography [MacArthur and Wilson, 1967], is proposed for humans on oceanic islands; extinction probability is determined by island carrying capacity, frequency and amplitude of fluctuations in resources determining carrying capacity, and the net costs of contact and exchange between population units. The model predicts that extinction probability will determine island settlement patterns within an island group resulting in nonsettlement of islands with low carrying capacities and settlement of all islands with high carrying capacities. Data examined from the Marshall Islands tend to support the model. The model is extended to initial atoll colonization patterns. Possible requirements for initial settlement are suggested.Deceased.  相似文献   

10.
Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities.  相似文献   

11.
1. We test MacArthur and Wilson's theory about the biogeography of communities on isolated habitat patches using bird breeding records from 16 small islands off the coasts of Britain and Ireland. 2. A traditional examination of patterns of species richness on these islands suggests that area and habitat diversity are important predictors, but that isolation and latitude have a negligible impact in this system. 3. Unlike traditional studies, we directly examine the fundamental processes of colonization and local extinction (cessation of breeding), rather than higher-order phenomena such as species richness. 4. We find that many of MacArthur and Wilson's predictions hold: colonization probability is lower on more isolated islands, and extinction probability is lower on larger islands and those with a greater diversity of habitats. 5. We also find an unexpected pattern: extinction probability is much lower on more isolated islands. This is the strongest relationship in these data, and isolation is the best single predictor of colonization and extinction. 6. Our results show that examination of species richness alone is misleading. Isolation has a strong effect on both of the dynamic processes that underlie richness, and in this system, the reductions in both colonization and extinction probability seen on more distant islands have opposing influences on species richness, and largely cancel each other out. 7. We suggest that an appropriate model for this system might be optimal foraging theory, which predicts that organisms will stay longer in a resource patch if the distance to a neighbouring patch is large. If nest sites and food are the resources in this system, then optimal foraging theory predicts the pattern we observe. 8. We advance the hypothesis that there is a class of spatial systems, defined by their scale and by the taxon under consideration, at which decision-making processes are a key driver of the spatiotemporal dynamics. The appropriate theory for such systems will be a hybrid of concepts from biogeography/metapopulation theory and behavioural ecology.  相似文献   

12.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units.  相似文献   

13.
Aim We investigated how Pleistocene refugia and recent (c. 12,000 years ago) sea level incursions shaped genetic differentiation in mainland and island populations of the Scinax perpusillus treefrog group. Location Brazilian Atlantic Forest, São Paulo state, south‐eastern Brazil. Methods Using mitochondrial and microsatellite loci, we examined population structure and genetic diversity in three species from the S. perpusillus group, sampled from three land‐bridge islands and five mainland populations, in order to understand the roles of Pleistocene forest fragmentation and sea level incursions on genetic differentiation. We calculated metrics of relatedness and genetic diversity to assess whether island populations exhibit signatures of genetic drift and isolation. Two of the three island populations in this study have previously been described as new species based on a combination of distinct morphological and behavioural characters, thus we used the molecular datasets to determine whether phenotypic change is consistent with genetic differentiation. Results Our analyses recovered three distinct lineages or demes composed of northern mainland São Paulo populations, southern mainland São Paulo populations, and one divergent island population. The two remaining island populations clustered with samples from adjacent mainland populations. Estimates of allelic richness were significantly lower, and estimates of relatedness were significantly higher, in island populations relative to their mainland counterparts. Main conclusions Fine‐scale genetic structure across mainland populations indicates the possible existence of local refugia within São Paulo state, underscoring the small geographic scale at which populations diverge in this species‐rich region of the Atlantic Coastal Forest. Variation in genetic signatures across the three islands indicates that the populations experienced different demographic processes after marine incursions fragmented the distribution of the S. perpusillus group. Genetic signatures of inbreeding and drift in some island populations indicate that small population sizes, coupled with strong ecological selection, may be important evolutionary forces driving speciation on land‐bridge islands.  相似文献   

14.
Metapopulations of moths on islands: a test of two contrasting models   总被引:1,自引:0,他引:1  
1. We describe a generalized mainland-island metapopulation model which includes migration among the island populations. We test model predictions with quantitative data on more than 200 species of moths in two contrasting networks of small islands. The data include a direct measure of migration rate, based on trapping of moths on rocky skerries with no local populations of the vast majority of species.
2. We predicted that moths which are strong fliers but uncommon on the islands have a higher incidence on scattered islands than on islands in a group, because the latter 'compete' for immigrants from the mainland. In contrast, we predicted that weakly flying species with potentially large local populations on the islands occur more frequently on islands in a group due to enhanced colonization rate.
3. Both predicted patterns were observed. Island occupancy increased significantly with the number of individuals caught on the rocky skerries, which is our measure of migration rate from the mainland, supporting the basic assumption that the species occur on the islands in a balance between colonizations and extinctions.
4. These results demonstrate that the moth metapopulations on islands represent a mixture of Levins's and mainland-island metapopulations, and that the mixture is different for different species in the same landscape.  相似文献   

15.
Additive genetic variance maintained by mutation in a selectively neutral quantitative character is analyzed for an ideal population distributed on n islands, each with local effective size N, that exchange migrants at a small rate, m. In a stable population structure, the expected genetic variance maintained within islands is identical to that in a panmictic population of the same total size, regardless of the migration rate (m > 0). This result contrasts with Wright's classical conclusion, based on inbreeding coefficients, that at least one immigrant per island every other generation (Nm > ½) is necessary for the genetic variance within local populations to approach that under panmixia. The expected genetic variance maintained among islands is inversely proportional to m and increases with the number of islands, but is independent of N. Local extinction and colonization diminish the genetic variance maintained within islands by reducing the effective size of island populations through the founder effect, although the expected genetic variance within islands is nearly as large as that in a panmictic population of the same total effective size. If the founders of new colonies originate from more than one island, rates of local extinction and colonization larger than about twice the migration rate will substantially reduce the genetic variance maintained among islands. These results indicate the importance of mutation and migration in maintaining quantitative genetic variance within small local populations.  相似文献   

16.
Aim Anole lizards (Reptilia: Sauria: Polychrotidae) display remarkable morphological and genetic differentiation between island populations. Morphological differences between islands are probably due to both adaptive (e.g. differential resource exploitation and intra‐ or interspecific competition) and non‐adaptive differentiation in allopatry. Anoles are well known for their extreme diversity and rapid adaptive speciation on islands. The main aim of this study was to use tests of morphological and genetic differentiation to investigate the population structure and colonization history of islands of the Islas de Bahia, off the coast of Honduras. Location Five populations of Norops bicaorum and Norops lemurinus were sampled, four from islands of the Islas de Bahia and one from the mainland of Honduras. Methods Body size and weight differentiation were measured in order to test for significant differences between sexes and populations. In addition, individuals were genotyped using the amplified fragment length polymorphism technique. Bayesian model‐based and assignment/exclusion methods were used to study genetic differentiation between island and mainland populations and to test colonization hypotheses. Results Assignment tests suggested migration from the mainland to the Cayos Cochinos, and from there independently to both Utila and Roatán, whereas migration between Utila and Roatán was lacking. Migration from the mainland to Utila was inferred, but was much less frequent. Morphologically, individuals from Utila appeared to be significantly different in comparison with all other localities. Significant differentiation between males of Roatán and the mainland was found in body size, whereas no significant difference was detected between the mainland and the Cayos Cochinos. Main conclusions Significant genetic and morphological differentiation was found among populations. A stepping‐stone model for colonization, in combination with an independent migration to Utila and Roatán, was suggested by assignment tests and was compatible with the observed morphological differentiation.  相似文献   

17.
We present an analytical model that unifies two of the most influential theories in community ecology, namely, island biogeography and niche theory. Our model captures the main elements of both theories by incorporating the combined effects of area, isolation, stochastic colonization and extinction processes, habitat heterogeneity, and niche partitioning in a unified, demographically based framework. While classical niche theory predicts a positive relationship between species richness and habitat heterogeneity, our unified model demonstrates that area limitation and dispersal limitation (the main elements of island biogeography) may create unimodal and even negative relationships between species richness and habitat heterogeneity. We attribute this finding to the fact that increasing heterogeneity increases the potential number of species that may exist in a given area (as predicted by niche theory) but simultaneously reduces the amount of suitable area available for each species and, thus, increases the likelihood of stochastic extinction. Area limitation, dispersal limitation, and low reproduction rates intensify the latter effect by increasing the likelihood of stochastic extinction. These analytical results demonstrate that the integration of island biogeography and niche theory provides new insights about the mechanisms that regulate the diversity of ecological communities and generates unexpected predictions that could not be attained from any single theory.  相似文献   

18.
Aim We analyse modern patterns of richness, presence and extinction of birds of prey (Accipitriforms and Falconiforms) in the Mediterranean and Macaronesian islands, using an integrated approach involving both biogeographical and human‐induced factors. Location Forty‐three islands grouped into nine Mediterranean and Macaronesian archipelagos. Methods Information about 25 species breeding during the past century and their fate (permanence or extinction) was compiled from the literature and regional reports. Jaccard's similarity index and cluster analyses were applied to define island assemblages. In order to detect the factors driving richness, presence and extinction, generalized linear models (GLM) were applied to 32 explanatory variables, evaluating location, physiography, isolation of island, taxonomic affinities and life‐history patterns of the raptor species. Results Islands belonging to the same archipelago clustered when raptor assemblages were compared, revealing a marked biogeographical signal. Species richness was influenced by island area and accessibility from the continent (explained deviance of 51% in the GLM). Models of the probability of presence (explained deviance of 32%) revealed positive influences of migratory patterns (maximum for partial migrants), size of distribution areas and proximity to main migration routes. The model for probability of extinction explained only 8% of the deviance. It revealed that populations living on islands with a high density of human population were more prone to disappear. Also, raptors depending on human resources had more risk of extinction. Main conclusions Basic predictions of island biogeography can explain current patterns of raptor richness in the study area despite millennia of intense humanization processes. Colonization success appears to depend on life‐history traits linked to migratory and dispersal strategies, whereas body‐size constraints are not influential. Additionally, our results reveal the importance of species‐based analyses in studies of island biogeography.  相似文献   

19.
Aim Species diversity is distributed heterogeneously through space, for reasons that are poorly understood. We tested three hypotheses to account for spatial variation in coniferous tree species diversity in a temperate island archipelago. The theory of island biogeography (ToIB) predicts that island area affects species diversity both directly (by increasing habitat diversity) and indirectly (by increasing abundances, which in turn reduce extinction rates). The ToIB also predicts that island isolation directly affects species diversity by reducing immigration rates. The passive sampling hypothesis predicts that island area and isolation both affect species diversity indirectly, by increasing and decreasing abundances, respectively. Community assembly rules (i.e. even partitioning of conifer abundances among islands) might also reduce tree species diversity beyond the core predictions of ToIB and the passive sampling hypothesis. Location Barkley Sound, British Columbia, Canada. Methods The abundances of eight coniferous tree species were quantified on 34 islands and two (1 ha) mainland plots. The predictions of the ToIB and the passive sampling hypothesis were tested using path analysis, and null models were used to test for abundance‐based assembly rules and to further test the passive sampling hypothesis. Results Path analysis showed that island area and isolation did not have direct, statistical effects on tree species diversity. Instead, both geographic variables had direct statistical effects on total tree abundances, which in turn predicted tree diversity. Results from several passive sampling null models were correlated with observed patterns in species diversity, but they consistently overestimated the number of tree species inhabiting most islands. A different suite of null models showed support for community assembly rules, or that tree species often reached higher abundances on islands that housed fewer heterospecific trees. Main conclusions Results were inconsistent with the ToIB. Instead, patterns in tree diversity were best explained by a combination of stochastic (passive sampling) and deterministic (assembly rules) processes. Stochastic and deterministic processes are commonly considered to be exclusive explanations for island community structure, but results from this study suggest that they can work synergistically to structure island tree communities.  相似文献   

20.
The Californian Channel Islands are near–shore islands with high levels of endemism, but extensive habitat loss has contributed to the decline or extinction of several endemic taxa. A key parameter for understanding patterns of endemism and demography in island populations is the magnitude of inter–island dispersal. This paper estimates the extent of migration and genetic differentiation in three extant and two extinct populations of Channel Island song sparrows (Melospiza melodia graminea). Inter–island differentiation was substantial (G''''ST: 0.14–0.37), with San Miguel Island having the highest genetic divergence and lowest migration rates. Santa Rosa and Santa Cruz Island populations were less diverged with higher migration rates. Genetic signals of past population declines were detected in all of the extant populations. The Channel Island populations were significantly diverged from mainland populations of M. m. heermanni (G''''ST: 0.30–0.64). Ten mtDNA haplotypes were recovered across the extant and extinct Channel Island population samples. Two of the ten haplotypes were shared between the Northern and Southern Channel Islands, with one of these haplotypes being detected on the Californian mainland. Our results suggest that there is little contemporary migration between islands, consistent with early explanations of avian biogeography in the Channel Islands, and that song sparrow populations on the northern Channel Islands are demographically independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号