首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: The aims of the study were to identify the specific genes of O-antigen gene cluster from Shiga toxin-producing Escherichia coli (STEC) O103 and to provide the basis for a specific real-time PCR test for rapid detection of E. coli O103. METHODS AND RESULTS: The published primers complementary to JUMPstart and gnd gene, the conserved flanking sequences of O-antigen genes clusters in E. coli and related species, were used to amplify the 12-kbp O103 O-antigen biosynthesis locus of STEC O103. A DNA library representative of this cluster allowed two O103-specific probes to be identified in the flippase (wzx) and UDP-galactose-4-epimerase (galE) genes. Two specific O103 serotyping real-time PCR tests based on these two genes were successfully developed. CONCLUSIONS: These results confirm that the O-antigen gene cluster sequences of E. coli allow rapidly a specific O-antigen real-time PCR assay to be designed. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings increase the number of real-time PCR-assays available to replace the classical O-serotyping among E. coli O-antigen.  相似文献   

2.
AIM: To characterize the locus for O-antigen biosynthesis from Escherichia coli O172 type strain and to develop a rapid, specific and sensitive PCR-based method for identification and detection of E. coli O172. METHODS AND RESULTS: DNA of O-antigen gene cluster of E. coli O172 was amplified by long-range PCR method using primers based on housekeeping genes galF and gnd Shot gun bank was constructed and high quality sequencing was performed. The putative genes for synthesis of UDP-FucNAc, O-unit flippase, O-antigen polymerase and glycosyltransferases were assigned by the homology search. The evolutionary relationship between O-antigen gene clusters of E. coli O172 and E. coli O26 is shown by sequence comparison. Genes specific to E. coli O172 strains were identified by PCR assays using primers based on genes for O-unit flippase, O-antigen polymerase and glycosyltransferases. The specificity of PCR assays was tested using all E. coli and Shigella O-antigen type strains, as well as 24 clinical E. coli isolates. The sensitivity of PCR assays was determined, and the detection limits were 1 pg microl(-1) chromosomal DNA, 0.2 CFU g(-1) pork and 0.2 CFU ml(-1) water. The total time required from beginning to end of the procedure was within 16 h. CONCLUSION: The O-antigen gene cluster of E. coli O172 was identified and PCR assays based on O-antigen specific genes showed high specificity and sensitivity. SIGNIFICANCE AND IMPACT OF THE STUDY: An O-antigen gene cluster was identified by sequencing. The specific genes were determined for E. coli O172. The sensitivity of O-antigen specific PCR assay was tested. Although Shiga toxin-producing O172 strains were not yet isolated from clinical specimens, they may emerge as pathogens.  相似文献   

3.
大肠杆菌O11是一种可在人畜间交叉传染的强致病菌,具有潜在流行性爆发的危险。现完成了O11 O-抗原基因簇的破译,筛选和鉴定了多种特异分子标识,并实现了对大肠杆菌O11的快速、灵敏和准确的分子分型检测。利用鸟枪法测定大肠杆菌O11 O-抗原基因簇的序列全长为14180bp,生物信息学方法分析序列结构,共发现12个基因:GDP-L型岩藻糖合成途径基因(gmd,fcl,gmm,manC,manB)、UDP-N乙酰葡萄糖C4异构酶基因(gne)、O-抗原转运酶基因(wzx)、O-抗原聚合酶基因(wzy)和4个糖基转移酶基因;用PCR方法筛选出2个针对大肠杆菌O11的特异基因和4对特异引物,并进行环境样品检测实验鉴定了该PCR检测方法的灵敏度;设计并筛选出8条针对大肠杆菌O11的特异探针。  相似文献   

4.
The Escherichia coli O45 O-antigen gene cluster of strain O45:H2 96-3285 was sequenced, and conventional (singleplex), multiplex, and real-time PCR assays were designed to amplify regions in the wzx (O-antigen flippase) and wzy (O-antigen polymerase) genes. In addition, PCR assays targeting the E. coli O55 wzx and wzy genes were designed based on previously published sequences. PCR assays targeting E. coli O45 showed 100% specificity for this serogroup, whereas by PCR assays specific for E. coli O55, 97/102 strains serotyped as E. coli O55 were positive for wzx and 98/102 for wzy. Multiplex PCR assays targeting the E. coli O45 and the E. coli O55 wzx and wzy genes were used to detect the organisms in fecal samples spiked at levels of 10(6) and 10(8) CFU/0.2 g feces. Thus, the PCR assays can be used to detect and identify E. coli serogroups O45 and O55.  相似文献   

5.
Escherichia coli O157, Salmonella enterica O30, and Citrobacter freundii F90 have identical O-antigen structures, as do E. coli O55 and S. enterica O50. The O-antigen gene cluster sequences for E. coli O157 and E. coli O55 have been published, and the genes necessary for O-antigen biosynthesis have been identified, although transferase genes for glycosidic linkages are only generic and have not been allocated to specific linkages. We determined sequences for S. enterica O30 and C. freundii F90 O-antigen gene clusters and compared them to the sequence of the previously described E. coli O157 cluster. We also determined the sequence of the S. enterica O50 O-antigen gene cluster and compared it to the sequence of the previously described E. coli O55 cluster. For both the S. enterica O30-C. freundii F90-E. coli O157 group and the S. enterica O50-E. coli O55 group of O antigens, the gene clusters have identical or nearly identical organizations. The two sets of gene clusters had comparable overall levels of similarity in their genes, which were lower than the levels determined for housekeeping genes for these species, which were 55 to 65% for the genes encoding glycosyltransferases and O-antigen processing proteins and 75 to 93% for the nucleotide-sugar pathway genes. Nonetheless, the similarity of the levels of divergence in the five gene clusters required us to consider the possibility that the parent gene cluster for each structure was in the common ancestor of the species and that divergence is faster than expected for the common ancestor hypothesis. We propose that the identical O-antigen gene clusters originated from a common ancestor, and we discuss some possible explanations for the increased rate of divergence that is seen in these genes.  相似文献   

6.
Escherichia coli is a clonal species, and occurs as both commensal and pathogenic strains, which are normally classified on the basis of their O, H, and K antigens. The O-antigen (O-specific polysaccharide), which consists of a series of oligosaccharide (O-unit) repeats, contributes major antigenic variability to the cell surface. The O-antigen gene cluster of E. coli O66 was sequenced in this study. The genes putatively responsible for the biosynthesis of dTDP-6-deoxy-L-talose and GDP-mannose, as well as those responsible for the transfer of sugars and for O-unit processing were identified based on their homology. The function of the wzy gene was confirmed by the results of a mutation test. Genes specific for E. coli O66 were identified via PCR screening against representatives of 186 E. coli and Shigella O type strains. The comparison of intergenic sequences located between galF and the O-antigen gene cluster in a range of E. coli and Shigella showed that this region may perform an important function in the homologous recombination of the O-antigen gene clusters.  相似文献   

7.
Shigella is an important human pathogen and is closely related to Escherichia coli. O-antigen is the most variable part of the lipopolysaccharide on the cell surface of Gram-negative bacteria and plays an important role in pathogenicity. The O-antigen gene cluster of S. boydii O1 was sequenced. The putative genes encoding enzymes for rhamnose synthesis, transferases, O-unit flippase, and O-unit polymerase were identified on the basis of homology. The O-antigen gene clusters of S. boydii O1 and E. coli O149, which share the same O-antigen form, were found to have the same genes and organization by adjacent gene PCR assay. Two genes specific for S. boydii O1 and E. coli O149 were identified by PCR screening against E. coli- and Shigella-type strains of the 186 known O-antigen forms and 39 E. coli clinical isolates. A PCR sensitivity of 103 to 104 CFU/mL overnight culture of S. boydii O1 and E. coli O149 was obtained. S. boydii O1 and E. coli O149 were differentiated by PCR using lacZ- and cadA-based primers.  相似文献   

8.
Shiga toxin-producing Escherichia coli (STEC) strains are important food-borne pathogens capable of causing hemolytic-uremic syndrome. STEC O157:H7 strains cause the majority of severe disease in the United States; however, there is a growing concern for the amount and severity of illness attributable to non-O157 STEC. Recently, the Food Safety and Inspection Service (FSIS) published the intent to regulate the presence of STEC belonging to serogroups O26, O45, O103, O111, O121, and O145 in nonintact beef products. To ensure the effective control of these bacteria, sensitive and specific tests for their detection will be needed. In this study, we identified single nucleotide polymorphisms (SNPs) in the O-antigen gene cluster that could be used to detect STEC strains of the above-described serogroups. Using comparative DNA sequence analysis, we identified 22 potentially informative SNPs among 164 STEC and non-STEC strains of the above-described serogroups and designed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) assays to test the STEC allele frequencies in an independent panel of bacterial strains. We found at least one SNP that was specific to each serogroup and also differentiated between STEC and non-STEC strains. Differences in the DNA sequence of the O-antigen gene cluster corresponded well with differences in the virulence gene profiles and provided evidence of different lineages for STEC and non-STEC strains. The SNPs discovered in this study can be used to develop tests that will not only accurately identify O26, O45, O103, O111, O121, and O145 strains but also predict whether strains detected in the above-described serogroups contain Shiga toxin-encoding genes.  相似文献   

9.
Enterohemorrhagic Escherichia coli O145 strains are emerging as causes of hemorrhagic colitis and hemolytic uremic syndrome. In this study, we present the structure of the E. coli O145 O antigen and the sequence of its gene cluster. The O145 antigen has repeat units containing three monosaccharide residues: 2-acetamido-2-deoxy-D-glucose (GlcNAc), 2-acetamidoylamino-2,6-dideoxy-L-galactose, and N-acetylneuraminic acid. It is very closely related to Salmonella enterica serovar Touera and S. enterica subsp. arizonae O21 antigen. The E. coli O145 gene cluster is located between the JUMPStart sequence and the gnd gene and consists of 15 open reading frames. Putative genes for the synthesis of the O-antigen constituents, for sugar transferase, and for O-antigen processing were annotated based on sequence similarities and the presence of conserved regions. The putative genes located in the E. coli O145 O-antigen gene cluster accounted for all functions expected for synthesis of the structure. An E. coli O145 serogroup-specific PCR assay based on the genes wzx and wzy was also developed by screening E. coli and Shigella isolates of different serotypes.  相似文献   

10.
O-antigens are highly polymorphic. The genes specifically involved in O-antigen synthesis are generally grouped together on the chromosome as a gene cluster. In Escherichia coli, the O-antigen gene clusters are characteristically located between the housekeeping genes galF and gnd. In this study, the O-antigen gene clusters of E. coli O59 and E. coli O155 were sequenced. The former was found to contain genes for GDP-mannose synthesis, glycosyltransferase genes and the O-antigen polymerase gene (wzy), while the latter contained only glycosyltransferase genes and wzy. O unit flippase genes (wzx) were found immediately downstream of the gnd gene, in the region between the gnd and hisI genes in these two strains. This atypical location of wzx has not been reported before, and furthermore these two genes complemented in trans despite the fact that different O-antigen structures are present in E. coli O59 and O155. A putative acetyltransferase gene was found downstream of wzx in both strains. Comparison of the region between gnd and hisI revealed that the wzx and acetyltransferase genes are closely related between E. coli O59 and O155, indicating that the two gene clusters arose recently from a common ancestor. This work provides further evidence for the O-antigen gene cluster having formed gradually, and selection pressure will eventually bring O-antigen genes into a single cluster. Genes specific for E. coli O59 and O155, respectively, were also identified.  相似文献   

11.
AIMS: A DNA sequence, from Escherichia coli STEC O145, homologous to O-island 29 from STEC O157 is described, together with a real-time PCR assay for detecting it. METHODS AND RESULTS: PCR and sequencing were used to identify the 'O-island 29' homologous DNA sequence from STEC O145 (strain VTH34). The sequence divergence between the STEC O145 and O157 'O-island 29' allowed a STEC O145 5'-nuclease PCR assay to be developed. CONCLUSIONS: The characterization of a novel locus in STEC O145 has allowed a specific O145 serogroup 5'-nuclease PCR assay to be designed. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings increase the number of serogroup PCR assays available as alternatives to classical O-serotyping of E. coli.  相似文献   

12.
PCR-based assays for detecting enterohemorrhagic Escherichia coli serogroups O26 and O113 were developed by targeting the wzx (O-antigen flippase) and the wzy (O-antigen polymerase) genes found in the O-antigen gene cluster of each organism. The PCR assays were specific for the respective serogroups, as there was no amplification of DNA from non-O26 and non-O113 E. coli serogroups or from other bacterial genera tested. Using the PCR assays, we were able to detect the organisms in seeded apple juice inoculated at concentration levels as low as < or =10 CFU/ml. The O26- and O113-specific PCR assays can potentially be used for typing E. coli O26 and O113 serogroups; these assays will offer an advantage to food and environmental microbiology laboratories in terms of identifying these non-O157 serogroups by replacing antigen-based serotyping.  相似文献   

13.
孔庆科  郭宏杰  赵广  郭玺  程剑松  王磊 《遗传学报》2004,31(12):1448-1454
对大肠杆菌O141 O-抗原基因簇进行测序,序列全长15601bp,用生物信息学的方法进行序列分析,共发现12个基因:鼠李糖合成酶基因(rmlB,rmlD,rmlA,rmlC)、甘露糖合成酶基因(manB,manC),糖基转移酶基因(orf6,orf7,orf9,orf10)、O-抗原转运酶基因(wzx)和O-抗原聚合酶基因(wzy)。用PCR的方法筛选出了针对大肠杆菌O141的特异基因,可以用于基因芯片或PCR方法对大肠杆菌O141的快速检测。通过对大肠杆菌O141的O-抗原基因簇及甘露糖和鼠李糖合成酶基因的进化分析发现:大肠杆菌O141 O-抗原基因簇是低GC含量的片段,仅O-抗原特异的基因才出现在O-抗原基因簇;并且这些基因可能介导了O-抗原基因簇间的重组及以O141 O-抗原基因簇的形成。  相似文献   

14.
Escherichia coli serogroups O5, O15, O26, O45, O55, O76, O91, O103, O104, O111, O113, O118, O121, O123, O128, O145, O146, O157, O165, O172, and O177 are the O-antigen forms of the most clinically relevant Shiga toxin-producing E. coli (STEC) serotypes. In this study, three multiplex PCR assays able to specifically detect these 21 serogroups were developed and validated. For this purpose, the O-antigen gene clusters of E. coli O5 and O76 were fully sequenced, their associated genes were identified on the basis of homology, and serogroup-specific primers were designed. After preliminary evaluation, these two primer pairs were proven to be highly specific and suitable for the development of PCR assays for O5 and O76 serogroup identification. Specific primers were also designed for serogroups O15, O45, O55, O91, O104, O113, O118, O123, O128, O146, O157, O165, O172, and O177 based on previously published sequences, and previously published specific primers for serogroups O26, O103, O111, O121, and O145 were also included. These 21 primer pairs were shown to be specific for their target serogroup when tested against E. coli type strains representing 169 known O-antigen forms of E. coli and Shigella and therefore suitable for being used in PCR assays for serogroup identification. In order to validate the three multiplex PCR assays, 22 E. coli strains belonging to the 21 covered serogroups and 18 E. coli strains belonging to other serogroups were screened in a double-blind test and their sensitivity was determined as 1 ng chromosomal DNA. The PCR assays developed in this study could be a faster, simpler, and less expensive strategy for serotyping of the most clinically relevant STEC strains in both clinical microbiology and public health laboratories, and so their development could benefit for clinical diagnosis, epidemiological investigations, surveillance, and control of STEC infections.  相似文献   

15.
16.
From the Camelidae family members, several serotypes of Escherichia coli (E. coli) have recently been isolated from diarrhoeic and non-diarrhoeic faecal samples. To date Shiga toxin-producing E. coli (STEC) strains have never been typed in one-humped camel (Camelus dromedarius). In the present study, two E. coli O157:H7 strains isolated from sick dromedaries were investigated. Virulence gene profiles were determined using a custom E. coli virulence DNA microarray, composed of 70-mer oligonucleotide probes targeting 264 virulence or related genes of known E. coli pathotypes. Both strains displayed positive hybridization signals for the Locus of enterocyte effacement (LEE) gene probes (ler, eae, espA, espB, tir genes), two Shiga toxin probes (stx1 and stx2), the O157 O-antigen specific probe, various virulence plasmid (pO157) probes like katP in addition to other accessory virulence genes characterized in STEC.  相似文献   

17.
Molecular beacons (MBs) are oligonucleotide probes that fluoresce upon hybridization. In this paper, we described the development of a real-time PCR assay to detect the presence of Escherichia coli O157:H7 using these fluorogenic reporter molecules. MBs were designed to recognize a 26-bp region of the rfbE gene, coding for an enzyme necessary for O-antigen biosynthesis. The specificity of the MB-based PCR assay was evaluated using various enterohemorrhagic (EHEC) and Shiga-like toxin-producing (STEC) E. coli strains as well as bacteria species that cross-react with the O157 antisera. All E. coli serotype O157 tested was positively identified while all other species, including the closely related O55 were not detected by the assay. Positive detection of E. coli O157:H7 was demonstrated when >10(2) CFU/ml was present in the samples. The capability of the assay to detect E. coli O157:H7 in raw milk and apple juice was demonstrated. As few as 1 CFU/ml was detected after 6 h of enrichment. These assays could be carried out entirely in sealed PCR tubes, enabling rapid and semiautomated detection of E. coli O157:H7 in food and environmental samples.  相似文献   

18.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

19.
In an attempt to develop a standard for ELISA-PCR detection of Shiga toxin producing Escherichia coli (STEC) O157, six published PCR tests were tested in a comparative study on a panel of 277 bacterial strains isolated from foods, animals and humans. These tests were based on the detection of the genes rfbE [J. Clin. Microbiol. 36 (1998) 1801] and rfbB [Appl. Environ. Microbiol. 65 (1999) 2954], the 3' end of the eae gene [Epidemiol. Infect. 112 (1994) 449], the region immediately flanking the 5' end of the eae gene [Int. J. Food. Microbiol. 32 (1996) 103], the flicH7 gene [J. Clin. Microbiol. 35 (1997) 656], or a part of the recently described 2634-bp Small Inserted Locus (SILO(157) locus) of STEC O157 [J. Appl. Microbiol. 93 (2002) 250]. Unlike the other PCR assays, those amplifying the rfb sequences were unable to distinguish toxigenic from nontoxigenic O157. These assays were relatively specific to STEC O157, giving essentially a cross reaction with clonally related E. coli O55 and to a lesser extent with E. coli O145, O125, O126. They also detected the Shiga toxin (stx)-negative derivatives of STEC O157. Based on these results, an ELISA-PCR assay consisting of the solution hybridization of amplicons with two probes that ensured the specificity of the amplification was developed. The ELISA-PCR assay, which used an internal control (IC) of inhibition, was able to detect 1 to 10 copies of STEC O157 in the PCR tube. Adaptation of PCR into ELISA-PCR assay format facilitates specific and sensitive detection of PCR amplification products and constitutes a method of choice for screening STEC O157.  相似文献   

20.
The chemical composition of each O-antigen subunit in gram-negative bacteria is a reflection of the unique DNA sequences within each rfb operon. By characterizing DNA sequences contained with each rfb operon, a diagnostic serotype-specific probe to Escherichia coli O serotypes that are commonly associated with bacterial infections can be generated. Recently, from an E. coli O157:H7 cosmid library, O-antigen-positive cosmids were identified with O157-specific antisera. By using the cosmid DNAs as probes, several DNA fragments which were unique to E. coli O157 serotypes were identified by Southern analysis. Several of these DNA fragments were subcloned from O157-antigen-positive cosmids and served as DNA probes in Southern analysis. One DNA fragment within plasmid pDS306 which was specific for E. coli O157 serotypes was identified by Southern analysis. The DNA sequence for this plasmid revealed homology to two rfb genes, the first of which encodes a GDP-mannose dehydratase. These rfb genes were similar to O-antigen biosynthesis genes in Vibrio cholerae and Yersinia enterocolitica serotype O:8. An oligonucleotide primer pair was designed to amplify a 420-bp DNA fragment from E. coli O157 serotypes. The PCR test was specific for E. coli O157 serotypes. PCR detected as few as 10 cells with the O157-specific rfb oligonucleotide primers. Coupled with current enrichment protocols, O157 serotyping by PCR will provide a rapid, specific, and sensitive method for identifying E. coli O157.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号