首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
冰晶核蛋白(ice nucleation protein,INP)是一种分泌型外膜蛋白,广泛分布于丁香假单胞菌,荧光假单胞菌和其他革兰氏阴性菌中。由于其在相对高温下(-2~-4℃)形成冰核的特性,INP最早应用于生物制冷领域。在细菌表面展示技术中,冰晶核蛋白作为运载蛋白得到广泛的应用。与其他的表面技术载体蛋白相比较,冰晶核蛋白具有稳定表达外源蛋白及展示分子量较大的外源蛋白的优点。INP细胞表面展示技术已被应用于全细胞生物催化剂、全细胞吸附剂和环境污染物降解剂等的开发,本文将简述INP表面展示技术的研究进展。  相似文献   

2.
酿酒酵母表面展示表达系统及应用   总被引:3,自引:0,他引:3  
酵母细胞表面展示表达系统是一种固定化表达异源蛋白质的真核展示系统,即把异源靶蛋白基因序列与特定的载体基因序列融合后导入酵母细胞,利用酿酒酵母细胞内蛋白转运到膜表面的机制(GPI锚定)使靶蛋白定位于酵母细胞表面并进行表达。它利用细胞表面展示技术使外源蛋白固定化于细胞表面,从而生产微生物细胞表面蛋白,可应用于生物催化剂、细胞吸附剂、活疫苗、环境治理、蛋白质文库筛选、高亲和抗体、生物传感器、抗原/抗体库构建、免疫检测及亲和纯化、癌症诊断等领域。国内对这一方面研究较少,本文主要介绍了该技术的基本原理、研究现状、应用及其发展前景。  相似文献   

3.
酵母表面展示(yeast surface display, YSD)技术是一种将外源靶蛋白基因序列与特定的载体基因序列融合后导入酵母细胞,利用酵母细胞内蛋白转运机制将靶蛋白表达并定位于酵母细胞表面的技术,最常用的是α-凝集素表达系统。酵母细胞具有真核细胞翻译后修饰机制,能够帮助目的蛋白正确折叠,可以用来展示各种真核蛋白,包括抗体、受体、酶和抗原肽等。酵母表面展示技术已成为生物技术和生物医学领域的强大蛋白质工程工具,结合流式细胞分选可用于改善蛋白质性质,包括亲和力、特异性、酶功能和稳定性等。本文从文库构建与筛选、抗体工程、蛋白质工程、酶工程和疫苗开发等方面对酵母表面展示技术应用最新进展进行了综述。  相似文献   

4.
细菌表面展示是将靶标蛋白质表达于细菌表面以更好地实现其功能的一种技术,它在重组细菌疫苗、生物燃料电池、全细胞催化剂和生物修复等多个领域均有广泛的应用.随着相关技术的发展,表面展示系统的各种性能被不断地改良,同时新的表面展示系统也陆续被开发和应用,使该技术得到持续的丰富和发展.本文重点关注近年研究得较多的细菌表面展示系统,主要对各类细菌表面展示系统的开发、改造和修饰,以及该技术在生物修复和生物传感器方面的应用作一综述.  相似文献   

5.
盛嘉元  张绪  郑强  徐志南 《生物工程学报》2014,30(10):1491-1503
无细胞蛋白表达体系是一种以细胞抽提物为基础的体外合成蛋白质表达技术,具有遗传背景简单、反应操控简便等特点,已成为研究生物反应系统的重要技术手段。在研究人员的不断努力下,反应体系从原核扩展到真核蛋白质合成体系,而且目标蛋白表达量从毫克级提高到数克级每升,成本不断降低,反应规模可达到百公升级。近年来,无细胞蛋白表达系统在复杂蛋白、毒性蛋白和膜蛋白表达方面的优势逐渐体现,展示了其在生物制药领域的重要应用潜力。总之,无细胞技术已经成为异源蛋白质高效合成和生物制药领域中有巨大潜力的新策略。  相似文献   

6.
噬菌体表面展示技术是一种将外源蛋白或抗体可变区与噬菌体表面特定蛋白质融合并展示于其表面,构建蛋白质或抗体库,并从中筛选特异蛋白质或抗体的基因工程技术。介绍这一技术的原理、相关展示系统以及在蛋白质相互作用的研究,抗体及疫苗的制备、多肽药物的研制等方面的应用潜力和独特的优点。  相似文献   

7.
酵母表面展示技术在蛋白质工程中的应用   总被引:1,自引:0,他引:1  
酵母细胞表面展示技术目前已成为蛋白质工程研究的重要工具,利用此技术可以鉴定蛋白间的相互作用、提高蛋白的亲和力和特异性、增加蛋白的稳定性和表达水平、绘制功能性抗原位图、固定化表达具有生物活性的蛋白和酶等,此项技术的运用代表着蛋白质工程研究中的最新进展.  相似文献   

8.
分子文库展示技术   总被引:1,自引:0,他引:1  
分子文库展示技术是一系列广泛应用于多肽、蛋白质及药物筛选和研究蛋白质间相互作用的有效的生物学技术。它将组合成的具有一定长度的随机序列寡核苷酸片段(或cDNA)克隆到特定表达载体中,使其表达产物(多肽片段或蛋白质结构域)以融合蛋白的形式展示在活的噬菌体或细胞表面。根据其蛋白质表达是否依赖于宿主表达系统,分为体内表达展示系统和无细胞展示系统(体外表达展示系统)。就其展示的部位不同又可分为噬菌体展示技术、细胞表面展示技术、核糖体展示技术、mRNA展示技术等。现对各种展示技术的基本原理及相关应用做简要综述。  相似文献   

9.
微生物细胞表面工程是近年来发展起来的,它利用细胞表面展示技术使外源蛋白固定化于细胞表面,从而生产微生物细胞表面蛋白。微生物细胞表面工程可用于细胞催化剂、细胞吸附剂、活疫苗、生物传感器的开发等。微生物细胞表面工程具有广阔的应用前景,但是国内对这一领域的研究刚起步。在介绍细胞表面工程的基础上,对微生物细胞表面工程技术进展进行了综述,展望了对该技术的发展。  相似文献   

10.
酿酒酵母细胞表面工程应用研究新进展   总被引:4,自引:0,他引:4  
酿酒酵母表面展示工程是一个新兴的蛋白表达系统,由于它能进行蛋白翻译后修饰,能方便地对表达的蛋白产物进行检测和筛选,近年来应用研究发展迅猛。它在构建全细胞催化剂、抗原/抗体库、生物吸附剂、生物传感器、组合蛋白文库、免疫检测及亲和纯化中取得了很多新的应用,在蛋白质分子的功能研究与应用中发挥了更加重要的作用。  相似文献   

11.
Microbial cell-surface display   总被引:27,自引:0,他引:27  
Cell-surface display allows peptides and proteins to be displayed on the surface of microbial cells by fusing them with the anchoring motifs. The protein to be displayed - the passenger protein - can be fused to an anchoring motif - the carrier protein - by N-terminal fusion, C-terminal fusion or sandwich fusion. The characteristics of carrier protein, passenger protein and host cell, and fusion method all affect the efficiency of surface display of proteins. Microbial cell-surface display has many potential applications, including live vaccine development, peptide library screening, bioconversion using whole cell biocatalyst and bioadsorption.  相似文献   

12.
Mitochondria evolved from an endosymbiotic proteobacterium in a process that required the transfer of genes from the bacterium to the host cell nucleus, and the translocation of proteins thereby made in the host cell cytosol into the internal compartments of the organelle. According to current models for this evolution, two highly improbable events are required to occur simultaneously: creation of a protein translocation machinery to import proteins back into the endosymbiont and creation of targeting sequences on the protein substrates themselves. Using a combination of two independent prediction methods, validated through tests on simulated genomes, we show that at least 5% of proteins encoded by an extant proteobacterium are predisposed for targeting to mitochondria, and propose we that mitochondrial targeting information was preexisting for many proteins of the endosymbiont. We analyzed a family of proteins whose members exist both in bacteria and in mitochondria of eukaryotes and show that the amino-terminal extensions occasionally found in bacterial family members can function as a crude import sequence when the protein is presented to isolated mitochondria. This activity leaves the development of a primitive translocation channel in the outer membrane of the endosymbiont as a single hurdle to initiating the evolution of mitochondria.  相似文献   

13.
Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.  相似文献   

14.
Bacterial protein toxins that modify host regulatory GTPases   总被引:1,自引:0,他引:1  
Many bacterial pathogens produce protein toxins to outmanoeuvre the immune system of the host. Some of these proteins target regulatory GTPases such as those belonging to the RHO family, which control the actin cytoskeleton of the host cell. In this Review, I discuss a diversity of mechanisms that are used by bacterial effectors and toxins to modulate the activity of host GTPases, with a focus on covalent modifications such as ADP-ribosylation, glucosylation, adenylylation, proteolysis, deamidation and transglutamination.  相似文献   

15.
Autotransporter proteins: novel targets at the bacterial cell surface   总被引:3,自引:0,他引:3  
Autotransporter proteins constitute a family of outer membrane/secreted proteins that possess unique structural properties that facilitate their independent transport across the bacterial membrane system and final routing to the cell surface. Autotransporter proteins have been identified in a wide range of Gram-negative bacteria and are often associated with virulence functions such as adhesion, aggregation, invasion, biofilm formation and toxicity. The importance of autotransporter proteins is exemplified by the fact that they constitute an essential component of some human vaccines. Autotransporter proteins contain three structural motifs: a signal sequence, a passenger domain and a translocator domain. Here, the structural properties of the passenger and translocator domains of three type Va autotransporter proteins are compared and contrasted, namely pertactin from Bordetella pertussis, the adhesion and penetration protein (Hap) from Haemophilus influenzae and Antigen 43 (Ag43) from Escherichia coli. The Ag43 protein is described in detail to examine how its structure relates to functional properties such as cell adhesion, aggregation and biofilm formation. The widespread occurrence of autotransporter-encoding genes, their apparent uniform role in virulence and their ability to interact with host cells suggest that they may represent rational targets for the design of novel vaccines directed against Gram-negative pathogens.  相似文献   

16.
Many bacterial avirulence (Avr) proteins, including the Pseudomonas syringae proteins, AvrRpt2 and AvrB, appear to be recognized inside the host plant cell by resistance mechanisms mediated by the cognate resistance (R) genes. It is thought that Avr proteins are either delivered directly into the host cell via the bacterial type III secretion system (TTSS) or taken up by the plant cell following secretion into the apoplast through the TTSS. Recently, it was shown that the Xanthomonas campestris AvrBs2 protein can be delivered directly into the host plant cell by the TTSS. However, it is not known whether other type III effectors of phytopathogens behave similarly. Here, using a novel protein transfection method, we demonstrate that AvrRpt2 and AvrB must enter the plant cell to be recognized by R gene-mediated mechanisms. First, we established a hypersensitive cell death assay for protoplasts using the membrane-impermeable, nuclear-staining dye, YO-PRO-1, and transgenic Arabidopsis plants that carry an inducible avrRpt2 gene. Second, we transfected E. coli-produced AvrRpt2 or AvrB proteins into Arabidopsis protoplasts using a protein transfection kit based on the carrier peptide Pep-1, and demonstrated that hypersensitive cell death occurs in a gene-for-gene-specific manner. In contrast, these Avr proteins failed to elicit hypersensitive cell death when they were applied to protoplasts without the carrier peptide. We conclude that our preparations of E. coli-produced AvrRpt2 and AvrB are active, that AvrRpt2 and AvrB must be delivered into the plant cell to be recognized, and that a method based on a carrier peptide can be used to introduce proteins into plant cells.  相似文献   

17.
ABSTRACT: BACKGROUND: The self-sufficient Autotransporter (AT) pathway, ubiquitous in Gram-negative bacteria, combines a relatively simple protein secretion mechanism with a high transport capacity. ATs consist of a secreted passenger domain and a beta-domain that facilitates transfer of the passenger across the cell-envelope. They have a great potential for the extracellular expression of recombinant proteins but their exploitation has suffered from the limited structural knowledge of carrier ATs. Capitalizing on its crystal structure, we have engineered the Escherichia coli AT Hemoglobin protease (Hbp) into a platform for the secretion and surface display of heterologous proteins, using the Mycobacterium tuberculosis vaccine target ESAT6 as a model protein. RESULTS: Based on the Hbp crystal structure, five passenger side domains were selected and one by one replaced by ESAT6, whereas a beta-helical core structure (beta-stem) was left intact. The resulting Hbp-ESAT6 chimeras were efficiently and stably secreted into the culture medium of E. coli. On the other hand, Hbp-ESAT6 fusions containing a truncated beta-stem appeared unstable after translocation, demonstrating the importance of an intact beta-stem. By interrupting the cleavage site between passenger and beta-domain, Hbp-ESAT6 display variants were constructed that remain cell associated and facilitate efficient surface exposure of ESAT6 as judged by proteinase K accessibility and whole cell immuno-EM analysis. Upon replacement of the passenger side domain of an alternative AT, EspC, ESAT6 was also efficiently secreted, showing the approach is more generally applicable to ATs. Furthermore, Hbp-ESAT6 was efficiently displayed in an attenuated Salmonella typhimurium strain upon chromosomal integration of a single encoding gene copy, demonstrating the potential of the Hbp platform for live vaccine development. CONCLUSIONS: We developed the first structurally informed AT platform for efficient secretion and surface display of heterologous proteins. The platform has potential with regard to the development of recombinant live vaccines and may be useful for other biotechnological applications that require high-level secretion or display of recombinant proteins by bacteria.  相似文献   

18.
We developed a new bacterial expression system that utilizes a combination of attributes (low temperature, induction of an mRNA-specific endoribonuclease causing host cell growth arrest, and culture condensation) to facilitate stable, high level protein expression, almost 30% of total cellular protein, without background protein synthesis. With the use of an optimized vector, exponentially growing cultures could be condensed 40-fold without affecting protein yields, which lowered sample labeling costs to a few percent of the cost of a typical labeling experiment. Because the host cells were completely growth-arrested, toxic amino acids such as selenomethionine and fluorophenylalanine were efficiently incorporated into recombinant proteins in the absence of cytotoxicity. Therefore, this expression system using Escherichia coli as a bioreactor is especially well suited to structural genomics, large-scale protein expressions, and the production of cytotoxic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号