首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Two Gram-negative, nonmotile, coccobacilli, SW-3T and SW-100T, were isolated from sea water of the Yellow Sea in Korea. Strains SW-3T and SW-100T contained ubiquinone-9 (Q-9) as the predominant respiratory lipoquinone and C18:1 omega9c and C16:0 as the major fatty acids. The DNA G+C contents of strains SW-3T and SW-100T were 44.1 mol% and 41.9 mol%, respectively. A neighbor-joining tree based on 16S rRNA gene sequences showed that the two isolates fell within the evolutionary radiation enclosed by the genus Acinetobacter. Strains SW-3T and SW-100T exhibited a 16S rRNA gene similarity value of 95.7% and a mean DNA-DNA relatedness level of 9.2%. Strain SW-3T exhibited 16S rRNA gene sequence similarity levels of 93.5-96.9% to the validly described Acinetobacter species and fifteen Acinetobacter genomic species. Strain SW-100T exhibited 16S rRNA gene sequence similarity levels of less than 97.0% to the other Acinetobacter species except Acinetobacter towneri DSM 14962T (98.0% similarity). Strains SW-3T and SW-100T exhibited mean levels of DNA-DNA relatedness of 7.3-16.7% to the type strains of some phylogenetically related Acinetobacter species. On the basis of phenotypic, phylogenetic, and genetic data, strains SW-3T and SW-100T were classified in the genus Acinetobacter as two distinct novel species, for which the names Acinetobacter marinus sp. nov. (type strain SW-3T=KCTC 12259T=DSM 16312T) and Acinetobacter seohaensis sp. nov. (type strain SW-100T=KCTC 12260T=DSM 16313T) are proposed, respectively.  相似文献   

2.
A novel Gram-positive bacterium, designated SYB2T, was isolated from wastewater reservoir sediment, and a polyphasic taxonomic study was conducted based on its morphological, physiological, and biochemical features, as well as the analysis of its 16S rRNA gene sequence. During the phylogenetic analysis of the strain SYB2T, results of a 16S rRNA gene sequence analysis placed this bacterium in the genus Arthrobacter within the family Micrococcaceae. SYB2T and Arthrobacter protophormiae ATCC 19271T, the most closely related species, both exhibited a 16S rRNA gene sequence similarity of 98.99%. The genomic DNA G+C content of the novel strain was found to be 62.0 mol%. The predominant fatty acid composition was anteiso-C15:0, anteiso-C17:0, iso-C16:0, and iso-C15:0. Analysis of 16S rRNA gene sequences and DNA-DNA relatedness, as well as physiological and biochemical tests, showed genotypic and phenotypic differences between strain SYB2T and other Arthrobacter species. The type strain of the novel species was identified as SYB2T (= KCTC 19291T= DSM 19449T).  相似文献   

3.
A Gram-positive, aerobic, rod-shaped, nonmotile, endospore-forming bacterium, designated Gsoil 349T, was isolated from soil of a ginseng field and characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that the strain Gsoil 349T belongs to the family Paenibacillaceae, and the sequence showed closest similarity with Cohnella thermotolerans DSM 17683T (94.1%) and Cohnella hongkongensis DSM 17642T (93.6%). The strain showed less than 91.3% 16S rRNA gene sequence similarity with Paenibacillus species. In addition, the presence of MK-7 as the major menaquinone and anteiso-C(15:0), iso-C(16:0), and C(16:0) as major fatty acids suggested its affiliation to the genus Cohnella. The G+C content of the genomic DNA was 53.4 mol%. On the basis of its phenotypic characteristics and phylogenetic distinctiveness, strain Gsoil 349T should be treated as a novel species within the genus Cohnella for which the name Cohnella panacarvi sp. nov. is proposed. The type strain is Gsoil 349T (=KCTC 13060T = DSM 18696T).  相似文献   

4.
A Gram-positive strain designated as MSL-14T isolated from a soil sample collected from Bigeum Island, Korea, was subjected to polyphasic taxonomy. The isolate was strictly aerobic. Cells were short rods and motile. Optimum growth temperature and pH was 28 degrees and 7.0, respectively. It was characterized chemotaxonomically as having a cell-wall peptidoglycan type based on LL-2,6-diaminopimelic acid and MK-8(H4) as the predominant menaquinone. The major fatty acids were iso-C16:0, C17:1 omega8c, and C18:1 omega9c. The G+C content was 67.6 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain MSL-14T is affiliated to the genus Nocardioides and formed a distinct lineage within the genus. MSL-14T showed highest sequence similarity to Nocardioides aestuarii JCM 12125T, having a similarity of 96.5%. Based on the 16S rRNA gene sequence divergence and phenotypic characteristics, it is proposed that strain MSL-14T should be classified as representing a novel member of the genus Nocardioides, for which we propose the name Nocardioides tritolerans sp. nov. The type strain is strain MSL-14T (=KCTC 19289T= DSM 19320T).  相似文献   

5.
A Gram-negative, pink-pigmented, non-spore-forming rod shaped, methanol-utilizing bacterium, strain YIM 48816(T), was isolated from forest soil collected from Sichuan province, China. Strain YIM 48816(T) can grow at 4-37 °C, pH 5.0-7.0 and 0% NaCl (w/v). Based on 16S rRNA gene sequence similarity studies, it belonged to the genus Methylobacterium, and formed a phyletic line. The 16S rRNA gene sequence similarities were 96.2% to Methylobacterium mesophilicum DSM 1708(T) and 96.0% to Methylobacterium brachiatum DSM 19569(T), and the phylogenetic similarities to all other Methylobacterium species with validly published names were less than 96.0%. The major menaquinones detected were Q-10 (97.14%) and Q-9 (2.86%). The major fatty acids were C18:1 ω7c (80.84%). The DNA G + C content was 66.2 mol%. It is apparent from the genotypic and phenotypic data that strain YIM 48816(T) belongs to a novel species of the genus Methylobacterium, for which the name Methylobacterium soli sp. nov. is proposed. The type strain is YIM 48816(T) (CCTCC AA 208027(T) = KCTC 22810(T)).  相似文献   

6.
A Gram-negative, deep brown-pigmented Gammaproteobacteria, strain IPL-1(T), capable of oxidizing indole was isolated from a lindane-contaminated site and subjected to a polyphasic taxonomic study. Most of the physiological and biochemical properties, major fatty acids (C(18:1)omega7c, C(16:1)omega7c/iso C(15:0) 2OH and C(16:0)), estimated DNA G+C content (67.2mol%) and 16S rRNA gene sequence analysis showed that strain IPL-1(T) belonged to the genus Pseudomonas. Strain IPL-1(T) exhibited highest 16S rRNA gene sequence similarity with Pseudomonas pseudoalcaligenes (99.0%), followed by Pseudomonas alcaliphila (98.7%), Pseudomonas oleovorans (98.3%), Pseudomonas nitroreducens (98.0%), Pseudomonas mendocina (97.6%) and Pseudomonas stutzeri (97.4%). However, the DNA-DNA relatedness values between strain IPL-1(T) and the closely related taxa were between 22% and 61%. On the basis of differential phenotypic characteristics and genotypic distinctiveness, strain IPL-1(T) should be classified within the genus Pseudomonas as a novel species, for which the name Pseudomonas indoloxydans is proposed. The type strain is IPL-1(T) (=MTCC 8062(T)=JCM 14246(T)).  相似文献   

7.
A Gram-positive, aerobic or facultative anaerobic, motile, spore-forming bacterial strain, designated Gsoil 1638T, was isolated from a soil sample of a ginseng field in Pocheon province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium, utilized a fairly narrow spectrum of carbon sources and tolerated 10% NaCl. The isolate was positive for catalase and oxidase tests but negative for the degradation of macromolecules such as casein, collagen, starch, chitin, CM-cellulose, xylan and DNA. The G + C content of the genomic DNA was 50.7 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were anteiso-C15:0 (44%) and C16:0 (25%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 1638T fell within the radiation of the cluster comprising Paenibacillus species and joined Paenibacillus anaericanus DSM 15890T with a bootstrap value of 100%. These two strains shared 99.5% 16S rRNA gene sequence similarity with each other. The phylogenetic distance from any other validly described species within the genus Paenibacillus was less than 96.2%. DNA-DNA relatedness value between strain Gsoil 1638T and its closest phylogenetic neighbor, Paenibacillus anaericanus, was 62%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1638T (= KCTC 13931T = LMG 23406T = CCUG 52472T) was classified in the genus Paenibacillus as the type strain of a novel species, for which the name Paenibacillus ginsengisoli sp. nov. is proposed.  相似文献   

8.
A mesophilic, facultative, anaerobic, xylanolytic-cellulolytic bacterium, TW1(T), was isolated from sludge in an anaerobic digester fed with pineapple waste. Cells stained Gram-positive, were spore-forming, and had the morphology of straight to slightly curved rods. Growth was observed in the temperature range of 30 to 50°C (optimum 37°C) and the pH range of 6.0 to 7.5 (optimum pH 7.0) under aerobic and anaerobic conditions. The strain contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The predominant isoprenoid quinone was menaquinone with seven isoprene units (MK-7). Anteiso-C(15:0), iso-C(16:0), anteiso-C(17:0), and C(16:0) were the predominant cellular fatty acids. The G+C content of the DNA was 49.5 mol%. A phylogenetic analysis based on 16S rRNA showed that strain TW1(T) belonged within the genus Paenibacillus and was closely related to Paenibacillus cellulosilyticus LMG 22232(T), P. curdlanolyticus KCTC 3759(T), and P. kobensis KCTC 3761(T) with 97.7, 97.5, and 97.3% sequence similarity, respectively. The DNA-DNA hybridization values between the isolate and type strains of P. cellulosilyticus LMG 22232(T), P. curdlanolyticus KCTC 3759(T), and P. kobensis KCTC 3761(T) were found to be 18.6, 18.3, and 18.0%, respectively. The protein and xylanase patterns of strain TW1(T) were quite different from those of the type strains of closely related Paenibacillus species. On the basis of DNA-DNA relatedness and phenotypic analyses, phylogenetic data and the enzymatic pattern presented in this study, strain TW1(T) should be classified as a novel species of the genus Paenibacillus, for which the name Paenibacillus xylaniclasticus sp. nov. is proposed. The type strain is TW1(T) (=NBRC 106381(T) =KCTC 13719(T) =TISTR 1914(T)).  相似文献   

9.
A non-motile and rod shaped bacterium, designated strain B1(T), was isolated from forest soil at Mt. Baekwoon, Republic of Korea. Cells were Gram-negative, catalase-positive, and oxidase-negative. The major fatty acids were 9-octadecenoic acid (C(18:1) omega9c; 42%) and hexadecanoic acid (C(16:0); 25.9%) and summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1) omega7c; 10.0%). The DNA G+C content was 44.1 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain B1(T) formed a lineage within the genus Acinetobacter and was closely related to A. baylyi DSM 14961(T) (98.6% sequence similarity), followed by A. baumannii DSM 30007(T) (97.4%), A. calcoaceticus DSM 30006(T) (97.0%) and 3 genomic species (96.8 approximately 7.6%). Phenotypic characteristics, gyrB gene sequence analysis and DNA-DNA relatedness data distinguished strain B1(T) from type strains of A. baylyi, A. baumannii, and A. calcoaceticus. On the basis of the evidence presented in this study, strain B1(T) represents a novel species of the genus Acinetobacter, for which the name Acinetobacter soli sp. nov. is proposed. The type strain is B1(T) (= KCTC 22184(T)= JCM 15062(T)).  相似文献   

10.
Strain IAM 14839, isolated from activated sludge in Japan, forms a visible floc and grows in the flocculated state. This bacterium is Gram-negative, rod-shaped, strictly aerobic and highly motile with a single polar flagellum. Both oxidase and catalase activities are positive. No growth was observed on sugars. The strain can grow at 20 degrees C, but does not grow at 37 degrees C. The G+C content of DNA is 66.3 mol% and Q-8 is the major quinone. The major cellular fatty acids are 16:1omega7c, 16:0, 18:1omega7c, 2OH 16:0, 3OH 10:0. The 16S rDNA sequence analysis indicated that the bacterium clustered within the genus Comamonas. On the basis of the phylogenetic analysis and phenotypic properties, it is proposed that the strain IAM 14839T be classified in a novel species of the genus Comamonas, Comamonas badia sp. nov. The type strain is IAM 14839T (=KCTC 12244T ).  相似文献   

11.
A Gram-negative, rod-shaped, non-spore-forming and motile bacterial strain TR7-01(T) was isolated from a compost soil in South Korea and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TR7-01(T) belonged to the genus Hydrogenophaga within the class Betaproteobacteria. Strain TR7-01(T) exhibited 16S rRNA gene sequence similarity values of 95.0-98.3% to members of the genus Hydrogenophaga: Hydrogenophaga bisanensis DSM12412(T) (98.3%), Hydrogenophaga flava DSM 619(T) (97.1%), Hydrogenophaga pseudoflava ATCC 33668(T) (96.8%), Hydrogenophaga intermedia S1(T) (96.4%), Hydrogenophaga atypica BSB 41.8(T) (95.8%), Hydrogenophaga defluvii BSB 9.5(T) (95.7%), Hydrogenophaga palleronii CCUG 20334(T) (95.6%), Hydrogenophaga caeni EMB71(T) (95.4%) and Hydrogenophaga taeniospiralis ATCC 49743(T) (95.0%). Chemotaxonomic data revealed that strain TR7-01(T) possesses ubiquinone Q-8, the G+C content was 69.9 mol%, and the predominant fatty acids were 16 : 1 ω7c/15 : 0 iso 2OH, 18 : 1 ω7c/ω9t/ω12t and C(16:0), all of which corroborated our assignment of the strain to the genus Hydrogenophaga. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that strain TR7-01(T) represents a distinct species. Based on these data, TR7-01(T) (= KCTC 12203(T) = DSM 18117(T)) should be classified as a novel Hydrogenophaga species, for which the name Hydrogenophaga temperata sp. nov. has been proposed.  相似文献   

12.
A Gram-positive, aerobic, non-motile, non-acid-alcohol-fast strain, designated YIM 61095(T), was isolated from the root of Maytenus austroyunnanensis collected from a tropical rainforest of Xishuangbanna in Yunnan Province, south-west China. Strain YIM 61095(T) exhibited chemotaxonomic and morphological characteristics that were consistent with members of the genus Saccharopolyspora. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 61095(T) was a member of the genus Saccharopolyspora and was most closely related to Saccharopolyspora flava AS 4.1520(T) (97.7% sequence similarity). The major fatty acids were iso-C(15:0), iso-C(16:0), iso-C(17:0) and anteiso-C(17:0). The predominant quinone detected was MK-9(H(4)). The DNA G+C content was 66.2 mol%. The phenotypic characteristics and DNA-DNA hybridization relatedness data indicated that strain YIM 61095(T) should be distinguished from Saccharopolyspora flava AS 4.1520(T). On the basis of the evidence presented in this study, strain YIM 61095(T) represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora endophytica sp. nov. is proposed. The type strain is YIM 61095(T) (=KCTC 19397(T)=CCTCC AA 208003(T)).  相似文献   

13.
Three red-pink pigmented strains, designated A1-12(T), A2-50A(T) and A2-91(T), were recovered from two different sites in a uranium mine. For all strains, the optimum growth temperature was 25°C, the optimum pH was 6.0-6.5 and the DNA G+C contents were between 60 and 63.4 mol%. The major respiratory quinone was menaquinone 7 (MK-7) and the fatty acid profiles contained iso- and anteiso-branched C15 fatty acids, summed feature 3 (16:1 ω6c and/or ω7c and/or 15:0 iso 2-OH), summed feature 4 (17:1 anteiso B and/or iso I) and the unsaturated fatty acid 16:1 ω5c as the major components. Phylogenetic analysis of the 16S rRNA gene sequences showed that these organisms represented three distinct branches within the family Flexibacteraceae most closely related to the members of the genus Hymenobacter. Strain A1-12(T) formed a distinct phylogenetic line along with H. rigui KCTC 12533(T) and they shared approximately 98.9% 16S rRNA gene sequence similarity. However, these two strains shared only 14.7% pairwise similarity in their genomic DNA. Strains A2-50A(T) and A2-91(T) formed two distinct lineages, related to the species H. soli KCTC 12607(T), sharing about 95.5% 16S rRNA gene sequence similarity between themselves, and 88.3 and 92.0% with other members of the genus Hymenobacter. Based on the phylogenetic analysis and physiological and biochemical characteristics, these isolates were considered to represent three novel species for which we propose the names Hymenobacter perfusus for strain A1-12(T) (=CIP 110166=LMG 26000), Hymenobacter flocculans for strain A2-50A(T) (=CIP 110139=LMG 25699) and Hymenobacter metalli for strain A2-91(T) (=CIP 110140=LMG 25700).  相似文献   

14.
A strictly aerobic, Gram-positive, motile, coccoid-shaped, halotolerant actinobacterium (10% NaCl, w/v), designated MSL-23T, was isolated from a soil sample on Bigeum Island, Korea. Results of 16S rRNA gene sequence analysis indicated that the isolate belonged to the genus Nocardioides, with the highest sequence similarity (95.63%) being to Nocardioides kribbensis KCTC 19038T. The major menaquinone was MK-8(H4), and the predominant cellular fatty acids were i-C16:0, ai-C17:0, C18:1 ω9c and 10-methyl-C16:0. The DNA G+C content was 69.7 mol%. The 16S rRNA gene sequence of strain MSL 23T and its chemotaxonomic properties showed it to be unique in the genus Nocardioides. Phenotypic characteristics distinguished strain MSL-23T from other Nocardioides species. On the basis of the phenotypic, chemotaxonomic and phylogenetic data strain MSL-23T represents a novel species, for which the name Nocardioides halotolerans sp. nov. is proposed, with MSL-23T (=KCTC 19274T=DSM 19273T) as the type strain.  相似文献   

15.
A strictly aerobic, non-motile, ovoid-shaped Alphaproteobacteria, designated strain JC2049(T), was isolated from a tidal flat sediment sample. The results of 16S rRNA gene sequence analysis indicated that this isolate belonged to the genus Thalassobius, with a sequence similarity of 96.9-97.3% to other valid Thalassobius spp. The cells required 1-7% NaCl for growth (optimum 2%) and accumulated poly-beta-hydroxybutyrate. Nitrite was reduced to nitrogen, but nitrate was not reduced to nitrite. No genetic potential for aerobic anoxygenic photosynthesis was detected. The primary isoprenoid quinone (Ubiquinone-10), predominant cellular fatty acids (C(18:1)omega7c, 11 methyl C(18:1)omega7c and C(16:0)) and DNA G+C content (61 mol%) were all consistent with the assignment of this isolate to the genus Thalassobius. Several phenotypic characteristics clearly distinguished our isolate from other Thalassobius species. The degree of genomic relatedness between strain JC2049(T) and other Thalassobius species was in a range of 20-43%. The polyphasic data presented in this study indicates that our isolate should be classified as a novel species within the genus Thalassobius. The name Thalassobius aestuarii sp. nov. is therefore proposed for this isolate; the type strain is JC2049(T) (= IMSNU 14011(T) = KCTC 12049(T) = DSM 15283(T)).  相似文献   

16.
Strain BH45(T) was isolated from forest soil of Mt. Bukhan in Jeongneung, Seoul, Korea. The Gram-staining-negative strain BH45(T) grows at 4-30°C (optimum of 25-30°C) and between pH 5-8 (optimum of pH 6-8). Its major cellular fatty acids are C(18:3) ω6c (6,9,12) and C(10:0). The G+C content of genomic DNA was 40.2 mol%. The major respiratory quinone system in strain BH45(T) is menaquinone-7. Phylogenetic analysis based on 16S rRNA gene sequences indicates that strain BH45(T) is closely related to the genus Pedobacter. Sequence similarities with P. terrae KCTC 12762(T), P. suwonensis KACC 11317(T), P. soli KACC 14939(T), P. alluvionis DSM 19624(T), P. roseus KCCM 42272(T), P. yonginense KCTC 22721(T) were 97.5, 97.1, 97.0, 97.0, 97.0, and 96.0%, respectively. DNA-DNA hybridization results distinguish strain BH45(T) from two Pedobacter species with high 16S rRNA gene sequence similarities. According to the phenotypic and molecular data, the strain BH45(T) clearly represents a novel species within the genus Pedobacter; thus, the name Pedobacter jeongneungensis sp. nov. is proposed for this strain. The type strain is BH45(T) (=KACC 15514(T) =JCM 17626(T)).  相似文献   

17.
A halophilic, Gram-positive, spore-forming motile Bacillus-like strain YIM 012(T), was isolated from one of the hypersaline soil samples collected in Xin-jiang province, China. Its optimum growth occurred at 10-20% of NaCl concentration (w/v), pH 7.0-8.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YIM 012(T) is a member of the genus of Alkalibacillus, which is well supported by its chemotaxonomic and molecular characteristics. Based on its phenotypic evidence and genotypic data, Alkalibacillus halophilus sp. nov. was proposed and strain YIM 012(T) (=DSM 17369(T)=KCTC 3990(T)) was assigned as the type strain of the novel species.  相似文献   

18.
A Gram-negative, strictly aerobic, motile bacterial strain, designated Gsoil 124T, was isolated from a soil sample taken from a ginseng field in Pocheon Province (South Korea). The isolate contained Q-10 as the predominant lipoquinone, plus C18:1 7c and summed feature 4 (C16:1 6c and/or iso- C15:0 2-OH) as the major fatty acids. The G+C content of the genomic DNA was 68.1 mol%, and the major polar lipids consisted of sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine. A comparative 16S rRNA gene sequence analysis showed that strain Gsoil 124T was most closely related to Sphingopyxis chilensis (98.7%), Sphingopyxis alaskensis (98.2%), Sphingopyxis witflariensis (98.2%), Sphingopyxis taejonensis (98.0%), and Sphingopyxis macrogoltabida (97.6%). However, the DNA-DNA relatedness between strain Gsoil 124T and its phylogenetically closest neighbors was less than 22%. Thus, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 124T should be classified as representing a novel species in the genus Sphingopyxis, for which the name Sphingopyxis panaciterrae sp. nov. is proposed. The type strain is Gsoil 124T (=KCTC 12580T=LMG 24003T).  相似文献   

19.
A novel strain of Flavobacterium, DCY55(T), a Gram-negative, yellow-pigmented, rod-shaped, non-spore-forming and gliding-motile bacterium, was isolated from the soil of a ginseng field in South Korea. Phylogenetic analysis, based on the 16S rRNA sequence, demonstrated that strain DCY55(T) belongs to the genus Flavobacterium within the family Flavobacteriaceae. Strain DCY55(T) showed the highest similarity with F. johnsoniae UW101(T) (97.1%), F. ginsenosidimutans THG 01(T) (96.8%), F. defluvii EMB 117(T) (96.6%), F. banpakuense 15F3(T) (96.3%) and F. anhuiense D3(T) (95.8%). Chemotaxonomic results showed that strain DCY55(T) predominantly contains menaquinone MK-6, that its DNA G+C content is 36.1mol%, and that its major cellular fatty acids are iso-C(15:0), summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1) ω 7c) and C(16:0). The chemotaxonomic and genotypic characteristics support the taxonomic classification of strain DCY55(T) to the genus Flavobacterium. The results of physiological and biochemical tests confirmed that strain DCY55(T) is distinct from previously validated species. We conclude that strain DCY55(T) should be classified as a novel species of the genus Flavobacterium, for which the name Flavobacterium ginsengiterrae sp. nov. is proposed, with the type strain DCY55(T) (=KCTC 23319(T) = JCM 17337(T)).  相似文献   

20.
An obligately aerobic bacterium, strain KOPRI 20902T, was isolated from a marine sediment in Ny-Arlesund, Spitsbergen Islands, Norway. Cells were irregular rods and motile with polar monotrichous flagellum. The optimum growth temperature was 17-22 degrees . Cells grew best in pH 7.0-10.0 and 3-4% sea salts (corresponding to 2.3-3.1% NaCl). The novel strain required Ca2+ or Mg2+ in addition to NaCl for growth. Sequence analysis of 16S rRNA gene revealed that the Arctic isolate is distantly related with established species (<92.4% sequence similarity) and formed a monophyletic group with Cellvibrio, which formed a distinct phylogenetic lineage in the order Pseudomonadales. Predominant cellular fatty acids [C16:1 omega7c/15:0 iso 2OH (45.3%), C16:0 (18.4%), ECL 11.799 (11.2%), C10:0 3OH (10.4%)]; DNA G+C content (37.0 mol%); nitrate reduction to nitrogen; absence of aesculin hydrolysis, N-acetyl-beta-glucosaminidase and esterase; no assimilation of arabinose, galactose, glucose, lactose, maltose, and trehalose differentiated the strain from the genus Cellvibrio. Based on the phylogenetic and phenotypic characteristics, Dasania marina gen. nov., sp. nov. is proposed in the order Pseudomonadales. Strain KOPRI 20902T (=KCTC 12566T=JCM 13441T) is the type strain of Dasania marina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号