首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer disease amyloid beta-peptide (Abeta) is generated via proteolytic processing of the beta-amyloid precursor protein by beta- and gamma-secretase. Gamma-secretase can be blocked by selective inhibitors but can also be modulated by a subset of non-steroidal anti-inflammatory drugs, including sulindac sulfide. These drugs selectively reduce the generation of the aggregation-prone 42-amino acid Abeta(42) and concomitantly increase the levels of the rather benign Abeta(38). Here we show that Abeta(42) and Abeta(38) generation occur independently from each other. The amount of Abeta(42) produced by cells expressing 10 different familial Alzheimer disease (FAD)-associated mutations in presenilin (PS) 1, the catalytic subunit of gamma-secretase, appeared to correlate with the respective age of onset in patients. However, Abeta(38) levels did not show a negative correlation with the age of onset. Modulation of gamma-secretase activity by sulindac sulfide reduced Abeta(42) in the case of wild type PS1 and two FAD-associated PS1 mutations (M146L and A285V). The remaining eight PS1 FAD mutants showed either no reduction of Abeta(42) or only rather subtle effects. Strikingly, even the mutations that showed no effect on Abeta(42) levels allowed a robust increase of Abeta(38) upon treatment with sulindac sulfide. Similar observations were made for fenofibrate, a compound known to increase Abeta(42) and to decrease Abeta(38). For mutants that predominantly produce Abeta(42), the ability of fenofibrate to further increase Abeta(42) levels became diminished, whereas Abeta(38) levels were altered to varying extents for all mutants analyzed. Thus, we conclude that Abeta(38) and Abeta(42) production do not depend on each other. Using an independent non-steroidal anti-inflammatory drug derivative, we obtained similar results for PS1 as well as for PS2. These in vitro results were confirmed by in vivo experiments in transgenic mice expressing the PS2 N141I FAD mutant. Our findings therefore have strong implications on the selection of transgenic mouse models used for screening of the Abeta(42)-lowering capacity of gamma-secretase modulators. Furthermore, human patients with certain PS mutations may not respond to gamma-secretase modulators.  相似文献   

2.
3.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

4.
Proteolytic processing of the amyloid precursor protein by beta- and gamma-secretase generates the amyloid-beta (Abeta) peptides, which are principal drug targets in Alzheimer disease therapeutics. gamma-Secretase has imprecise cleavage specificity and generates the most abundant Abeta40 and Abeta42 species together with longer and shorter peptides such as Abeta38. Several mechanisms could explain the production of multiple Abeta peptides by gamma-secretase, including sequential processing of longer into shorter Abeta peptides. A novel class of gamma-secretase modulators (GSMs) that includes some non-steroidal anti-inflammatory drugs has been shown to selectively lower Abeta42 levels without a change in Abeta40 levels. A signature of GSMs is the concomitant increase in shorter Abeta peptides, such as Abeta38, leading to the suggestion that generation of Abeta42 and Abeta38 peptide species by gamma-secretase is coordinately regulated. However, no evidence for or against such a precursor-product relationship has been provided. We have previously shown that stable overexpression of aggressive presenilin-1 (PS1) mutations associated with early-onset familial Alzheimer disease attenuated the cellular response to GSMs, resulting in greatly diminished Abeta42 reductions as compared with wild type PS1. We have now used this model system to investigate whether Abeta38 production would be similarly affected indicating coupled generation of Abeta42 and Abeta38 peptides. Surprisingly, treatment with the GSM sulindac sulfide increased Abeta38 production to similar levels in four different PS1 mutant cell lines as compared with wild type PS1 cells. This was confirmed with the structurally divergent GSMs ibuprofen and indomethacin. Mass spectrometry analysis and high resolution urea gel electrophoresis further demonstrated that sulindac sulfide did not induce detectable compensatory changes in levels of other Abeta peptide species. These data provide evidence that Abeta42 and Abeta38 species can be independently generated by gamma-secretase and argue against a precursor-product relationship between these peptides.  相似文献   

5.
Certain non-steroidal anti-inflammatory drugs (NSAIDs) preferentially inhibit production of the amyloidogenic Abeta42 peptide, presumably by direct modulation of gamma-secretase activity. A recent report indicated that NSAIDs could reduce Abeta42 by inhibition of the small GTPase Rho, and a single inhibitor of Rho kinase (ROCK) mimicked the effects of Abeta42-lowering NSAIDs. To investigate whether Abeta42 reduction is a common property of ROCK inhibitors, we tested commercially available compounds in cell lines that were previously used to demonstrate the Abeta42-lowering activity of NSAIDs. Surprisingly, we found that two ROCK inhibitors reduced total Abeta secretion in a dose-dependent manner but showed no selectivity for Abeta42. In addition, ROCK inhibitors did not increase Abeta38 secretion in cell-based assays or reduce Abeta production in gamma-secretase in vitro assays, which are critical characteristics of Abeta42-lowering NSAIDs. The reduction in total Abeta levels by ROCK inhibitors was not accompanied by overall-changes in amyloid precursor protein processing. Targeting ROCK by expression of dominant-negative or constitutively active ROCK mutants failed to modulate Abeta secretion, indicating that ROCK inhibition may either be redundant or insufficient for Abeta reduction by ROCK inhibitors. Taken together, these results seem to exclude a mechanistic involvement of ROCK in the Abeta42-lowering activity of NSAIDs.  相似文献   

6.
Presenilin (PS)/gamma-secretase-mediated intramembranous proteolysis of amyloid precursor protein produces amyloid beta (Abeta) peptides in which Abeta species of different lengths are generated through multiple cleavages at the gamma-, zeta-, and epsilon-sites. An increased Abeta42/Abeta40 ratio is a common characteristic of most cases of familial Alzheimer disease (FAD)-linked PS mutations. However, the molecular mechanisms underlying amyloid precursor protein proteolysis leading to increased Abeta42/Abeta40 ratios still remain unclear. Here, we report our findings on the enzymatic analysis of gamma-secretase derived from I213T mutant PS1-expressing PS1/PS2-deficient (PS(-/-)) cells and from the brains of I213T mutant PS1 knock-in mice. Kinetics analyses revealed that the FAD mutation reduced de novo Abeta generation, suggesting that mutation impairs the total catalytic rate of gamma-secretase. Analysis of each Abeta species revealed that the FAD mutation specifically reduced Abeta40 levels more drastically than Abeta42 levels, leading to an increased Abeta42/Abeta40 ratio. By contrast, the FAD mutation increased the generation of longer Abeta species such as Abeta43, Abeta45, and >Abeta46. These results were confirmed by analyses of gamma-secretase derived from I213T knock-in mouse brains, in which the reduction of de novo Abeta generation was mutant allele dose-dependent. Our findings clearly indicate that the mechanism underlying the increased Abeta42/Abeta40 ratio observed in cases of FAD mutations is related to the differential inhibition of gamma-site cleavage reactions, in which the reaction producing Abeta40 is subject to more inhibition than that producing Abeta42. Our results also provide novel insight into how enhancing the generation of longer Abetas may contribute to Alzheimer disease onset.  相似文献   

7.
Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.  相似文献   

8.
Mutations in the presenilin 1 (PS1) gene are responsible for the early onset of familial Alzheimer disease (FAD). Accumulating evidence shows that PS1 is involved in gamma-secretase activity and that FAD-associated mutations of PS1 commonly accelerate Abeta(1-42) production, which causes Alzheimer disease (AD). Recent studies suggest, however, that PS1 is involved not only in Abeta production but also in other processes that lead to neurodegeneration. To better understand the causes of neurodegeneration linked to the PS1 mutation, we analyzed the development of tau pathology, another key feature of AD, in PS1 knock-in mice. Hippocampal samples taken from FAD mutant (I213T) PS1 knock-in mice contained hyperphosphorylated tau that reacted with various phosphodependent tau antibodies and with Alz50, which recognizes the conformational change of PHF tau. Some neurons exhibited Congo red birefringence and Thioflavin T reactivity, both of which are histological criteria for neurofibrillary tangles (NFTs). Biochemical analysis of the samples revealed SDS-insoluble tau, which under electron microscopy examination, resembled tau fibrils. These results indicate that our mutant PS1 knock-in mice exhibited NFT-like tau pathology in the absence of Abeta deposition, suggesting that PS1 mutations contribute to the onset of AD not only by enhancing Abeta(1-42) production but by also accelerating the formation and accumulation of filamentous tau.  相似文献   

9.
Alzheimer disease (AD) is characterized by cerebral deposits of beta-amyloid (Abeta) peptides, which are surrounded by neuroinflammatory cells. Epidemiological studies have shown that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD. In addition, biological data indicate that certain NSAIDs specifically lower Abeta42 levels in cultures of peripheral cells independently of cyclooxygenase (COX) activity and reduce cerebral Abeta levels in AD transgenic mice. Whether other NSAIDs, including COX-selective compounds, modulate Abeta levels in neuronal cells remains unexploited. Here, we investigated the effects of compounds from every chemical class of NSAIDs on Abeta40 and Abeta42 secretion using both Neuro-2a cells and rat primary cortical neurons. Among non-selective NSAIDs, flurbiprofen and sulindac sulfide concentration-dependently reduced the secretion not only of Abeta42 but also of Abeta40. Surprisingly, both COX-2 (celecoxib; sc-125) or COX-1 (sc-560) selective compounds significantly increased Abeta42 secretion, and either did not alter (sc-560; sc-125) or reduced (celecoxib) Abeta40 levels. The levels of betaAPP C-terminal fragments and Notch cleavage were not altered by any of the NSAIDs, indicating that gamma-secretase activity was not overall changed by these drugs. The present findings show that only a few non-selective NSAIDs possess Abeta-lowering properties and therefore have a profile potentially relevant to their clinical use in AD.  相似文献   

10.
Campbell WA  Iskandar MK  Reed ML  Xia W 《Biochemistry》2002,41(10):3372-3379
The final proteolytic step to generate the amyloid beta-protein (Abeta) of Alzheimer's disease (AD) from beta-amyloid precursor protein (APP) is achieved by presenilin (PS)-dependent gamma-secretase cleavage. AD-causing mutations in PS1 and PS2 result in a selective and significant increase in production of the more amyloidogenic Abeta42 peptide. PS1 and PS2 undergo endoproteolysis by an unknown enzyme termed presenilinase to generate the functional complex of N- and C-terminal fragments (NTF/CTF). To investigate the endoproteolytic activity that generates active PS, we used a mammalian cell-free system that allows de novo human PS NTF and CTF generation. PS NTF and CTF generation in vitro was observed in endoplasmic reticulum (ER)-enriched fractions of membrane vesicles and to a lesser extent in Golgi/trans-Golgi-network (TGN)-enriched fractions. AD-causing mutations in PS1 and PS2 did not alter de novo generation of PS fragments. Removal of peripheral membrane-associated and cytosolic proteins did not prevent de novo generation of fragments, indicating that presenilinase activity corresponds to an integral membrane protein. Among several general inhibitors of different protease classes that blocked the presenilinase activity, pepstatin A was the most potent inhibitor. Screening available transition state analogue gamma-secretase inhibitors led to the identification of two compounds that were able to prevent the de novo generation of PS fragments, with an expected inhibition of Abeta generation. Our studies provide a biochemical approach to characterize and identify this elusive presenilinase.  相似文献   

11.
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been known to reduce risk for Alzheimer's disease. In addition to the anti-inflammatory effects of NSAIDs to block cylooxygenase, it has been shown recently that a subset of NSAIDs selectively inhibits the secretion of highly amyloidogenic Abeta42 from cultured cells, although the molecular target(s) of NSAIDs in reducing the activity of gamma-secretase for Abeta42 generation (gamma(42)-secretase) still remain unknown. Here we show that sulindac sulfide (SSide) directly acts on gamma-secretase and preferentially inhibits the gamma(42)-secretase activity derived from the 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate-solubilized membrane fractions of HeLa cells, in an in vitro gamma-secretase assay using recombinant amyloid beta precursor protein C100 as a substrate. SSide also inhibits activities for the generation of Abeta40 as well as for Notch intracellular domain at higher concentrations. Notably, SSide displayed linear noncompetitive inhibition profiles for gamma(42)-secretase in vitro. Our data suggest that SSide is a direct inhibitor of gamma-secretase that preferentially affects the gamma(42)-secretase activity.  相似文献   

12.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

13.
Sequential processing of the β-amyloid precursor protein by β- and γ-secretase generates the amyloid β-peptide (Aβ), which is widely believed to play a causative role in Alzheimer disease. Selective lowering of the pathogenic 42-amino acid variant of Aβ by γ-secretase modulators (GSMs) is a promising therapeutic strategy. Here we report that mutations in presenilin (PS), the catalytic subunit of γ-secretase, display differential responses to non-steroidal anti-inflammatory drug (NSAID)-type GSMs and more potent second-generation compounds. Although many pathogenic PS mutations resisted lowering of Aβ(42) generation by the NSAID sulindac sulfide, the potent NSAID-like second-generation compound GSM-1 was capable of lowering Aβ(42) for many but not all mutants. We further found that mutations at homologous positions in PS1 and PS2 can elicit differential Aβ(42) responses to GSM-1, suggesting that a positive GSM-1 response depends on the spatial environment in γ-secretase. The aggressive pathogenic PS1 L166P mutation was one of the few pathogenic mutations that resisted GSM-1, and Leu-166 was identified as a critical residue with respect to the Aβ(42)-lowering response of GSM-1. Finally, we found that GSM-1-responsive and -resistant PS mutants behave very similarly toward other potent second-generation compounds of different structural classes than GSM-1. Taken together, our data show that a positive Aβ(42) response for PS mutants depends both on the particular mutation and the GSM used and that attenuated Aβ(42) responses to low potency GSMs can be overcome for many PS mutants by second generation GSMs.  相似文献   

14.
Chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a lower risk of developing Alzheimer's disease. Recent evidence indicates that some NSAIDs specifically inhibit secretion of the amyloidogenic A beta 42 peptide in cultured cells and mouse models of Alzheimer's disease. The reduction of A beta 42 peptides is not mediated by inhibition of cyclooxygenases (COX) but the molecular mechanism underlying this novel activity of NSAIDs has not been further defined. We now demonstrate that NSAIDs efficiently reduce the intracellular pool of A beta 42 in cell-based studies and selectively decrease A beta 42 production in a cell-free assay of gamma-secretase activity. Moreover, we find that presenilin-1 (PS1) mutations, which affect gamma-secretase activity, differentially modulate the cellular A beta 42 response to NSAID treatment. Overexpression of the PS1-M146L mutation enhances the cellular drug response to A beta 42 lowering NSAIDs as compared with cells expressing wild-type PS1. In contrast, expression of the PS1-Delta Exon9 mutation strongly diminishes the A beta 42 response, showing that PS1 mutations can modulate the cellular drug response to NSAID treatment both positively and negatively. Enhancement of the NSAID drug response was also observed with overexpression of the APP V717F mutation but not with Swedish mutant APP, which affects beta-secretase cleavage. In sum, these results strongly suggest that NSAIDs represent a founding group of compounds that lower A beta 42 production by direct modulation of gamma-secretase activity or its substrate.  相似文献   

15.
Zhao G  Tan J  Mao G  Cui MZ  Xu X 《Journal of neurochemistry》2007,100(5):1234-1246
It has been hypothesized that different C-terminus of beta-amyloid peptide (Abeta) may be generated by different gamma-secretase activities. Recently, we have identified a new zeta-cleavage site at Abeta46, leading to an important finding that the C-terminus of Abeta is produced by a series of sequential cleavages. This finding prompted us to examine the effects of the known gamma-secretase inhibitors on different steps of the gamma-secretase-mediated sequential cleavages and specifically their effects on the formation and turnover of the intermediate Abeta(46). Our results demonstrate that some of the known inhibitors, such as L-685,458 and III-31C as well as inhibitors IV and V, inhibit the formation of secreted Abeta(40/42) by inhibiting the formation of the intermediate Abeta(46). However, most of the other inhibitors show no inhibitory effect on the formation of the intermediate Abeta(46), but rather inhibit the turnover of Abeta(46), resulting in its accumulation. In addition, the non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen and sulindac sulfide have no effect on the formation and turnover of Abeta(46), but rather modulate the ratio of secreted Abeta at a step after the formation of Abeta(40) and Abeta(42). Thus, our data strongly suggest that the multi-sequential intramembrane cleavages of amyloid precursor protein C (APP) are likely catalyzed by the same gamma-secretase.  相似文献   

16.
Although wild-type human presenilin 1 (PS1) rescues the C. elegans egg-laying (egl) phenotype that is caused by a loss of function mutation in the C. elegans presenilin homologue sel12, most familial Alzheimer's disease (FAD)-linked PS1 mutants only partially rescue this phenotype. To investigate the effects of the loss of function sel12 mutation on Abeta production in mammalian cells, we analyzed Abeta production in transfected H4 neuroglioma cells expressing the PS1 homologue of the sel12 C60S mutant, PS1 C92S. This analysis revealed that PS1 C92S increased Abeta42 levels in a similar fashion to other pathogenic Alzheimer's disease (AD) PS1 mutations. Significantly, the PS1 C92S mutation has recently been identified as the pathogenic mutation in an Italian family with FAD. Thus, placing a mutation that results in loss of function in C. elegans into a context whereby its effect on mammalian cells can be evaluated suggests that all FAD-linked PS1 mutants result in increased Abeta42 production through a partial loss of function mechanism.  相似文献   

17.
U Leimer  K Lun  H Romig  J Walter  J Grünberg  M Brand  C Haass 《Biochemistry》1999,38(41):13602-13609
Alzheimer's disease (AD) is characterized by the invariable accumulation of senile plaques composed of amyloid beta-peptide (Abeta). Mutations in three genes are known to cause familial Alzheimer's disease (FAD). The mutations occur in the genes encoding the beta-amyloid precursor protein (betaAPP) and presenilin (PS1) and PS2 and cause the increased secretion of the pathologically relevant 42 amino acid Abeta42. We have now cloned the zebrafish (Danio rerio) PS1 homologue (zf-PS1) to study its function in amyloidogenesis and to prove the critical requirement of an unusual aspartate residue within the seventh putative transmembrane domain. In situ hybridization and reverse PCR reveal that zf-PS1 is maternally inherited and ubiquitously expressed during embryogenesis, suggesting an essential housekeeping function. zf-PS1 is proteolytically processed to produce a C-terminal fragment (CTF) of approximately 24 kDa similar to human PS proteins. Surprisingly, wt zf-PS1 promotes aberrant Abeta42 secretion like FAD associated human PS1 mutations. The unexpected pathologic activity of wt zf-PS1 may be due to several amino acid exchanges at positions where FAD-associated mutations have been observed. The amyloidogenic function of zf-PS1 depends on the conserved aspartate residue 374 within the seventh putative transmembrane domain. Mutagenizing this critical aspartate residue abolishes endoproteolysis of zf-PS1 and inhibits Abeta secretion in human cells. Inhibition of Abeta secretion is accompanied by the accumulation of C-terminal fragments of betaAPP, suggesting a defect in gamma-secretase activity. These data provide further evidence that PS proteins are directly involved in the proteolytic cleavage of betaAPP and demonstrate that this function is evolutionarily conserved.  相似文献   

18.
Increased Abeta42 production has been linked to the development of Alzheimer disease. We now identify a number of compounds that raise Abeta42. Among the more potent Abeta42-raising agents identified are fenofibrate, an antilipidemic agent, and celecoxib, a COX-2-selective NSAID. Many COX-2-selective NSAIDs tested raised Abeta42, including multiple COX-2-selective derivatives of two Abeta42-lowering NSAIDs. Compounds devoid of COX activity and the endogenous isoprenoids FPP and GGPP also raised Abeta42. These compounds seem to target the gamma-secretase complex, increasing gamma-secretase-catalyzed production of Abeta42 in vitro. Short-term in vivo studies show that two Abeta42-raising compounds increase Abeta42 levels in the brains of mice. The elevations in Abeta42 by these compounds are comparable to the increases in Abeta42 induced by Alzheimer disease-causing mutations in the genes encoding amyloid beta protein precursor and presenilins, raising the possibility that exogenous compounds or naturally occurring isoprenoids might increase Abeta42 production in humans.  相似文献   

19.
The two homologous presenilins are key factors for the generation of amyloid beta-peptide (Abeta), since Alzheimer's disease (AD)-associated mutations enhance the production of the pathologically relevant 42-amino acid Abeta (Abeta42), and a gene knockout of presenilin-1 (PS1) significantly inhibits total Abeta production. Presenilins undergo proteolytic processing within the domain encoded by exon 9, a process that may be closely related to their biological and pathological activity. An AD-associated mutation within the PS1 gene deletes exon 9 (PS1Deltaexon9) due to a splicing error and results in the accumulation of the uncleaved full-length protein. We now demonstrate the unexpected finding that the pathological activity of PS1Deltaexon9 is independent of its lack to undergo proteolytic processing, but is rather due to a point mutation (S290C) occurring at the aberrant exon 8/10 splice junction. Mutagenizing the cysteine residue at position 290 to the original serine residue completely inhibits the pathological activity in regard to the elevated production of Abeta42. Like PS1Deltaexon9, the resulting presenilin variant (PS1Deltaexon9 C290S) accumulates as an uncleaved protein and fully replaces endogenous presenilin fragments. Moreover, PS1Deltaexon9 C290S exhibits a significantly increased biological activity in a highly sensitive in vivo assay as compared with the AD-associated mutation. Therefore not only the increased Abeta42 production but also the decreased biological function of PS1Deltaexon9 is due to a point mutation and independent of the lack of proteolytic processing.  相似文献   

20.
Mutations in presenilin 1 (PS1) and PS2 genes contribute to the pathogenesis of early onset familial Alzheimer's disease by increasing secretion of the pathologically relevant Abeta42 polypeptides. PS genes are also implicated in Notch signaling through proteolytic processing of the Notch receptor in Caenorhabditis elegans, Drosophila melanogaster, and mammals. Here we show that Drosophila PS (Psn) protein undergoes endoproteolytic cleavage and forms a stable high molecular weight (HMW) complex in Drosophila S2 or mouse neuro2a (N2a) cells in a similar manner to mammalian PS. The loss-of-function recessive point mutations located in the C-terminal region of Psn, that cause an early pupal-lethal phenotype resembling Notch mutant in vivo, disrupted the HMW complex formation, and abolished gamma-secretase activities in cultured cells. The overexpression of Psn in mouse embryonic fibroblasts lacking PS1 and PS2 genes rescued the Notch processing. Moreover, disruption of the expression of Psn by double-stranded RNA-mediated interference completely abolished the gamma-secretase activity in S2 cells. Surprisingly, gamma-secretase activity dependent on wild-type Psn was associated with a drastic overproduction of Abeta1-42 from human betaAPP in N2a cells, but not in S2 cells. Our data suggest that the mechanism of gamma-secretase activities through formation of HMW PS complex, as well as its abolition by loss-of-function mutations located in the C terminus, are highly conserved features in Drosophila and mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号