首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.  相似文献   

2.
Mutations in the presenilin 1 (PS1) gene are responsible for the early onset of familial Alzheimer disease (FAD). Accumulating evidence shows that PS1 is involved in gamma-secretase activity and that FAD-associated mutations of PS1 commonly accelerate Abeta(1-42) production, which causes Alzheimer disease (AD). Recent studies suggest, however, that PS1 is involved not only in Abeta production but also in other processes that lead to neurodegeneration. To better understand the causes of neurodegeneration linked to the PS1 mutation, we analyzed the development of tau pathology, another key feature of AD, in PS1 knock-in mice. Hippocampal samples taken from FAD mutant (I213T) PS1 knock-in mice contained hyperphosphorylated tau that reacted with various phosphodependent tau antibodies and with Alz50, which recognizes the conformational change of PHF tau. Some neurons exhibited Congo red birefringence and Thioflavin T reactivity, both of which are histological criteria for neurofibrillary tangles (NFTs). Biochemical analysis of the samples revealed SDS-insoluble tau, which under electron microscopy examination, resembled tau fibrils. These results indicate that our mutant PS1 knock-in mice exhibited NFT-like tau pathology in the absence of Abeta deposition, suggesting that PS1 mutations contribute to the onset of AD not only by enhancing Abeta(1-42) production but by also accelerating the formation and accumulation of filamentous tau.  相似文献   

3.
Abeta42-lowering nonsteroidal anti-inflammatory drugs (NSAIDs) constitute the founding members of a new class of gamma-secretase modulators that avoid side effects of pan-gamma-secretase inhibitors on NOTCH processing and function, holding promise as potential disease-modifying agents for Alzheimer disease (AD). These modulators are active in cell-free gamma-secretase assays indicating that they directly target the gamma-secretase complex. Additional support for this hypothesis was provided by the observation that certain mutations in presenilin-1 (PS1) associated with early-onset familial AD (FAD) change the cellular drug response to Abeta42-lowering NSAIDs. Of particular interest is the PS1-DeltaExon9 mutation, which provokes a pathogenic increase in the Abeta42/Abeta40 ratio and dramatically reduces the cellular response to the Abeta42-lowering NSAID sulindac sulfide. This FAD PS1 mutant is unusual as a splice-site mutation results in deletion of amino acids Thr(291)-Ser(319) including the endoproteolytic cleavage site of PS1, and an additional amino acid exchange (S290C) at the exon 8/10 splice junction. By genetic dissection of the PS1-DeltaExon9 mutation, we now demonstrate that a synergistic effect of the S290C mutation and the lack of endoproteolytic cleavage is sufficient to elevate the Abeta42/Abeta40 ratio and that the attenuated response to sulindac sulfide results partially from the deficiency in endoproteolysis. Importantly, a wider screen revealed that a diminished response to Abeta42-lowering NSAIDs is common among aggressive FAD PS1 mutations. Surprisingly, these mutations were also partially unresponsive to gamma-secretase inhibitors of different structural classes. This was confirmed in a mouse model with transgenic expression of the PS1-L166P mutation, in which the potent gamma-secretase inhibitor LY-411575 failed to reduce brain levels of soluble Abeta42. In summary, these findings highlight the importance of genetic background in drug discovery efforts aimed at gamma-secretase, suggesting that certain AD mouse models harboring aggressive PS mutations may not be informative in assessing in vivo effects of gamma-secretase modulators and inhibitors.  相似文献   

4.
Zhang L  Lee J  Song L  Sun X  Shen J  Terracina G  Parker EM 《Biochemistry》2005,44(11):4450-4457
Gamma-secretase catalyzes the proteolytic processing of a number of integral membrane proteins, including amyloid precursor protein (APP) and Notch. The native gamma-secretase is a heterogeneous population of large membrane protein complexes containing presenilin 1 (PS1) or presenilin 2 (PS2), aph-1a or aph-1b, nicastrin, and pen-2. Here we report the reconstitution of a gamma-secretase complex in Sf9 cells by co-infection with baculoviruses carrying the PS1, nicastrin, pen-2, and aph-1a genes. The reconstituted enzyme processes C99 and the Notch-like substrate N160 and displays the characteristic features of gamma-secretase in terms of sensitivity to a gamma-secretase inhibitor, upregulation of Abeta42 production by a familial Alzheimer's disease (FAD) mutation in the APP gene, and downregulation of Notch processing by PS1 FAD mutations. However, the ratio of Abeta42:Abeta40 production by the reconstituted gamma-secretase is significantly higher than that of the native enzyme from 293 cells. Unlike in mammalian cells where PS1 FAD mutations cause an increase in Abeta42 production, PS1 FAD missense mutations in the reconstitution system alter the cleavage sites in the C99 substrate without changing the Abeta42:Abeta40 ratio. In addition, PS1DeltaE9 is a loss-of-function mutation in both C99 and N160 processing. Reconstitution of gamma-secretase provides a homogeneous system for studying the individual gamma-secretase complexes and their roles in Abeta production, Notch processing and AD pathogenesis. These studies may provide important insight into the development of a new generation of selective gamma-secretase inhibitors with an improved side effect profile.  相似文献   

5.
Alzheimer disease amyloid beta-peptide (Abeta) is generated via proteolytic processing of the beta-amyloid precursor protein by beta- and gamma-secretase. Gamma-secretase can be blocked by selective inhibitors but can also be modulated by a subset of non-steroidal anti-inflammatory drugs, including sulindac sulfide. These drugs selectively reduce the generation of the aggregation-prone 42-amino acid Abeta(42) and concomitantly increase the levels of the rather benign Abeta(38). Here we show that Abeta(42) and Abeta(38) generation occur independently from each other. The amount of Abeta(42) produced by cells expressing 10 different familial Alzheimer disease (FAD)-associated mutations in presenilin (PS) 1, the catalytic subunit of gamma-secretase, appeared to correlate with the respective age of onset in patients. However, Abeta(38) levels did not show a negative correlation with the age of onset. Modulation of gamma-secretase activity by sulindac sulfide reduced Abeta(42) in the case of wild type PS1 and two FAD-associated PS1 mutations (M146L and A285V). The remaining eight PS1 FAD mutants showed either no reduction of Abeta(42) or only rather subtle effects. Strikingly, even the mutations that showed no effect on Abeta(42) levels allowed a robust increase of Abeta(38) upon treatment with sulindac sulfide. Similar observations were made for fenofibrate, a compound known to increase Abeta(42) and to decrease Abeta(38). For mutants that predominantly produce Abeta(42), the ability of fenofibrate to further increase Abeta(42) levels became diminished, whereas Abeta(38) levels were altered to varying extents for all mutants analyzed. Thus, we conclude that Abeta(38) and Abeta(42) production do not depend on each other. Using an independent non-steroidal anti-inflammatory drug derivative, we obtained similar results for PS1 as well as for PS2. These in vitro results were confirmed by in vivo experiments in transgenic mice expressing the PS2 N141I FAD mutant. Our findings therefore have strong implications on the selection of transgenic mouse models used for screening of the Abeta(42)-lowering capacity of gamma-secretase modulators. Furthermore, human patients with certain PS mutations may not respond to gamma-secretase modulators.  相似文献   

6.
More than 150 familial Alzheimer disease (FAD)-associated missense mutations in presenilins (PS1 and PS2), the catalytic subunit of the gamma-secretase complex, cause aberrant amyloid beta-peptide (Abeta) production, by increasing the relative production of the highly amyloidogenic 42-amino acid variant. The molecular mechanism behind this pathological activity is unclear, and different possibilities ranging from a gain of function to a loss of function have been discussed. gamma-Secretase, signal peptide peptidase (SPP) and SPP-like proteases (SPPLs) belong to the same family of GXGD-type intramembrane cleaving aspartyl proteases and share several functional similarities. We have introduced the FAD-associated PS1 G384A mutation, which occurs within the highly conserved GXGD motif of PS1 right next to the catalytically critical aspartate residue, into the corresponding GXGD motif of the signal peptide peptidase-like 2b (SPPL2b). Compared with wild-type SPPL2b, mutant SPPL2b slowed intramembrane proteolysis of tumor necrosis factor alpha and caused a relative increase of longer intracellular cleavage products. Because the N termini of the secreted counterparts remain unchanged, the mutation selectively affects the liberation of the intracellular processing products. In vitro experiments demonstrate that the apparent accumulation of longer intracellular cleavage products is the result of slowed sequential intramembrane cleavage. The longer cleavage products are still converted to shorter peptides, however only after prolonged incubation time. This suggests that FAD-associated PS mutation may also result in reduced intramembrane cleavage of beta-amyloid precursor protein (betaAPP). Indeed, in vitro experiments demonstrate slowed intramembrane proteolysis by gamma-secretase containing PS1 with the G384A mutation. As compared with wild-type PS1, the mutation selectively slowed Abeta40 production, whereas Abeta42 generation remained unaffected. Thus, the PS1 G384A mutation causes a selective loss of function by slowing the processing pathway leading to the benign Abeta40.  相似文献   

7.
Proteolytic processing of the amyloid precursor protein by beta- and gamma-secretase generates the amyloid-beta (Abeta) peptides, which are principal drug targets in Alzheimer disease therapeutics. gamma-Secretase has imprecise cleavage specificity and generates the most abundant Abeta40 and Abeta42 species together with longer and shorter peptides such as Abeta38. Several mechanisms could explain the production of multiple Abeta peptides by gamma-secretase, including sequential processing of longer into shorter Abeta peptides. A novel class of gamma-secretase modulators (GSMs) that includes some non-steroidal anti-inflammatory drugs has been shown to selectively lower Abeta42 levels without a change in Abeta40 levels. A signature of GSMs is the concomitant increase in shorter Abeta peptides, such as Abeta38, leading to the suggestion that generation of Abeta42 and Abeta38 peptide species by gamma-secretase is coordinately regulated. However, no evidence for or against such a precursor-product relationship has been provided. We have previously shown that stable overexpression of aggressive presenilin-1 (PS1) mutations associated with early-onset familial Alzheimer disease attenuated the cellular response to GSMs, resulting in greatly diminished Abeta42 reductions as compared with wild type PS1. We have now used this model system to investigate whether Abeta38 production would be similarly affected indicating coupled generation of Abeta42 and Abeta38 peptides. Surprisingly, treatment with the GSM sulindac sulfide increased Abeta38 production to similar levels in four different PS1 mutant cell lines as compared with wild type PS1 cells. This was confirmed with the structurally divergent GSMs ibuprofen and indomethacin. Mass spectrometry analysis and high resolution urea gel electrophoresis further demonstrated that sulindac sulfide did not induce detectable compensatory changes in levels of other Abeta peptide species. These data provide evidence that Abeta42 and Abeta38 species can be independently generated by gamma-secretase and argue against a precursor-product relationship between these peptides.  相似文献   

8.
Presenilin-1 (PS1) is a causative gene in early onset familial Alzheimer's disease (FAD). FAD-linked mutant PS1s significantly increased Abeta40 and Abeta42(43) levels (P < 0.001) and decreased the production of an 11.4 kD (beta-stub) and an 8.7 kD (alpha-stub) carboxyl-terminal fragment of amyloid beta precursor protein (betaAPP-CTFs) (P < 0.01). In the 2% CHAPS extracted lysates, the complex containing the amino-terminal fragment of PS1 (PS1-NTF), the carboxyl-terminal fragments of PS1 (PS1-CTF), and betaAPP-CTFs was identified. Incubation of this isolated complex at pH 6.4 showed the direct generation of Abeta40 and gamma-stub from this complex. This reaction was inhibited by a gamma-secretase inhibitor. The degrading rate of a co-precipitated beta-stub was facilitated under the presence of FAD-linked mutant PS1s. This findings suggest that the direct generation of Abeta from the complex may play an important role in the pathogenesis of Alzheimer's disease.  相似文献   

9.
Previously, we reported that mutations in presenilin 1 (PS1) increased the intracellular levels of amyloid beta-protein (Abeta)42. However, it is still not known at which cellular site or how PS1 mutations exert their effect of enhancing Abeta42-gamma-secretase cleavage. In this study, to clarify the molecular mechanisms underlying this enhancement of Abeta42-gamma-secretase cleavage, we focused on determining the intracellular site of the cleavage. To address this issue, we used APP-C100 encoding the C-terminal beta-amyloid precursor protein (APP) fragment truncated at the N terminus of Abeta (C100); C100 requires only gamma-secretase cleavage to yield Abeta. Mutated PS1 (M146L)-induced Neuro 2a cells showed enhanced Abeta1-42 generation from transiently expressed C100 as well as from full-length APP, whereas the generation of Abeta1-40 was not increased. The intracellular generation of Abeta1-42 from transiently expressed C100 in both mutated PS1-induced and wild-type Neuro 2a cells was inhibited by brefeldin A. Moreover, the generation of Abeta1-42 and Abeta1-40 from a C100 mutant containing a di-lysine endoplasmic reticulum retention signal was greatly decreased, indicating that the major intracellular site of gamma-secretase cleavage is not the endoplasmic reticulum. The intracellular generation of Abeta1-42/40 from C100 was not influenced by monensin treatment, and the level of Abeta1-42/40 generated from C100 carrying a sorting signal for the trans-Golgi network was higher than that generated from wild-type C100. These results using PS1-mutation-harbouring and wild-type Neuro 2a cells suggest that Abeta42/40-gamma-secretase cleavages occur in the Golgi compartment and the trans-Golgi network, and that the PS1 mutation does not alter the intracelluar site of Abeta42-gamma-secretase cleavage in the normal APP proteolytic processing pathway.  相似文献   

10.
Processing of the Alzheimer amyloid precursor protein (APP) into the amyloid beta-protein and the APP intracellular domain is a proteolysis event mediated by the gamma-secretase complex where presenilin (PS) proteins are key constituents. PS is subjected to an endoproteolytic cleavage, generating a stable heterodimer composed of an N-terminal and a C-terminal fragment. Here we aimed at further understanding the role of PS in endoproteolysis, in proteolytic processing of APP and Notch, and in assembly of the gamma-secretase complex. By using a truncation protocol and alanine scanning, we identified Tyr-288 in the PS1 N-terminal fragment as critical for PS-dependent intramembrane proteolysis. Further mutagenesis of the 288 site identified mutants differentially affecting endoproteolysis and gamma-secretase activity. The Y288F mutant was endoproteolyzed to the same extent as wild type PS but increased the amyloid beta-protein 42/40 ratio by approximately 75%. In contrast, the Y288N mutant was also endoproteolytically processed but was inactive in reconstituting gamma-secretase in PS null cells. The Y288D mutant was deficient in both endoproteolysis and gamma-secretase activity. All three mutant PS1 molecules were incorporated into gamma-secretase complexes and stabilized Pen-2 in PS null cells. Thus, mutations at Tyr-288 do not affect gamma-secretase complex assembly but can differentially control endoproteolysis and gamma-secretase activity.  相似文献   

11.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

12.
Gamma-secretase mediates the final proteolytic cleavage, which liberates amyloid beta-peptide (Abeta), the major component of senile plaques in the brains of Alzheimer disease patients. Therefore, gamma-secretase is a prime target for Abeta-lowering therapeutic strategies. gamma-Secretase is a protein complex composed of four different subunits, presenilin (PS), APH-1, nicastrin, and PEN-2, which are most likely present in a 1:1:1:1 stoichiometry. PS harbors the catalytically active site, which is critically required for the aspartyl protease activity of gamma-secretase. Moreover, numerous familial Alzheimer disease-associated mutations within the PSs increase the production of the aggregation-prone and neurotoxic 42-amino acid Abeta. Nicastrin may serve as a substrate receptor, although this has recently been challenged. PEN-2 is required to stabilize PS within the gamma-secretase complex. No particular function has so far been assigned to APH-1. The four components are sufficient and required for gamma-secretase activity. At least six different gamma-secretase complexes exist that are composed of different variants of PS and APH-1. All gamma-secretase complexes can exert pathological Abeta production. Assembly of the gamma-secretase complex occurs within the endoplasmic reticulum, and only fully assembled and functional gamma-secretase complexes are transported to the plasma membrane. Structural analysis by electron microscopy and chemical cross-linking reveals a water-containing cavity, which allows intramembrane proteolysis. Specific and highly sensitive gamma-secretase inhibitors have been developed; however, they interfere with the physiological function of gamma-secretase in Notch signaling and thus cause rather significant side effects in human trials. Modulators of gamma-secretase, which selectively affect the production of the pathological 42-amino acid Abeta, do not inhibit Notch signaling.  相似文献   

13.
The N141I mutation in presenilin (PS) 2 is tightly linked with a form of autosomal dominant familial Alzheimer's disease in the Volga German families. We previously reported that mouse brains harboring mutant PS2 contained increased levels of amyloid beta protein (Abeta) 42 in the Tris-saline-soluble fraction (Oyama, F., Sawamura, N., Kobayashi, K., Morishima-Kawashima, M., Kuramochi, T., Ito, M., Tomita, T., Maruyama, K., Saido, T. C., Iwatsubo, T., Capell, A., Walter, J., Grünberg, J., Ueyama, Y., Haass, C. and Ihara, Y. (1998) J. Neurochem. 71, 313-322). Here, using a new extraction protocol, we quantitated the Abeta40 and Abeta42 levels in the Tris-saline-insoluble fraction. The insoluble Abeta levels were found to be higher than the soluble Abeta levels, and the insoluble Abeta42 levels were markedly increased in mutant PS2 transgenic mice. To investigate the origin of the insoluble Abeta42, we prepared the detergent-insoluble, low density membrane fraction. This fraction from two independent lines of mutant PS2 transgenic mice contained remarkably increased levels of Abeta42 and significantly low levels of glycerophospholipids and sphingomyelin. This unexpected finding suggests that a large increase in the levels of Abeta42 in mutant PS2 mice is presumably induced through alterations of the lipid composition in the low density membrane domain in the brain.  相似文献   

14.
gamma-Secretase is an atypical aspartyl protease that cleaves amyloid beta-precursor protein to generate Abeta peptides that are causative for Alzheimer disease. gamma-Secretase is a multimeric membrane protein complex composed of presenilin (PS), nicastrin, Aph-1, and Pen-2. Pen-2 directly binds to transmembrane domain 4 of PS and confers proteolytic activity on gamma-secretase, although the mechanism of activation and its role in catalysis remain unknown. Here we show that an addition of amino acid residues to the N terminus of Pen-2 specifically increases the generation of Abeta42, the longer and more aggregable species of Abeta. The effect of the N-terminal elongation of Pen-2 on Abeta42 generation was independent of the amino acid sequences, the expression system and the presenilin species. In vitro gamma-secretase assay revealed that Pen-2 directly affects the Abeta42-generating activity of gamma-secretase. The elongation of Pen-2 N terminus caused a reduction in the water accessibility of the luminal side of the catalytic pore of PS1 in a similar manner to that caused by an Abeta42-raising gamma-secretase modulator, fenofibrate, as determined by substituted cysteine accessibility method. These data suggest a unique mechanism of Abeta42 overproduction associated with structural changes in the catalytic pore of presenilins caused commonly by the N-terminal elongation of Pen-2 and fenofibrate.  相似文献   

15.
beta-Amyloid peptides (Abeta) that form the senile plaques of Alzheimer disease consist mainly of 40- and 42-amino acid (Abeta 40 and Abeta 42) peptides generated from the cleavage of the amyloid precursor protein (APP). Generation of Abeta involves beta-secretase and gamma-secretase activities and is regulated by membrane trafficking of the proteins involved in Abeta production. Here we describe a new small molecule, EHT 1864, which blocks the Rac1 signaling pathways. In vitro, EHT 1864 blocks Abeta 40 and Abeta 42 production but does not impact sAPPalpha levels and does not inhibit beta-secretase. Rather, EHT 1864 modulates APP processing at the level of gamma-secretase to prevent Abeta 40 and Abeta 42 generation. This effect does not result from a direct inhibition of the gamma-secretase activity and is specific for APP cleavage, since EHT 1864 does not affect Notch cleavage. In vivo, EHT 1864 significantly reduces Abeta 40 and Abeta 42 levels in guinea pig brains at a threshold that is compatible with delaying plaque accumulation and/or clearing the existing plaque in brain. EHT 1864 is the first derivative of a new chemical series that consists of candidates for inhibiting Abeta formation in the brain of AD patients. Our findings represent the first pharmacological validation of Rac1 signaling as a target for developing novel therapies for Alzheimer disease.  相似文献   

16.
A major component of the amyloid plaque core in Alzheimer's disease (AD) is the 40-42-residue amyloid beta peptide (Abeta). Mutations linked to AD such as those in presenilins 1 (PS1) and 2 (PS2) invariably increase the longer Abeta42 species that forms neurotoxic oligomers. It is believed that PS1/2 constitute the catalytic subunit of the gamma-secretase responsible for the final step in Abeta biogenesis. Recent genetic studies have identified a number of additional genes encoding APH1a, APH1b, PEN2, and Nicastrin proteins, which are part of the gamma-secretase complex with PS1. Further, knockout studies using RNAi showed that these components are essential for gamma-secretase activity. However, the nature of gamma-secretase and how the aforementioned proteins regulate its activity are still incompletely understood. Here we present evidence that unlike PS1, overexpression of these proteins can increase the levels of Abeta, suggesting that these proteins are limiting for gamma-secretase activity. In addition, our studies also suggest that the presenilin partners regulate the relative levels of Abeta40 and Abeta42.  相似文献   

17.
Gamma-secretase cleaves the transmembrane domain of beta-amyloid precursor protein at multiple sites. These are referred to as gamma-, zeta-, and epsilon-cleavages. We showed previously that DAPT, a potent dipeptide gamma-secretase inhibitor, caused differential accumulations of longer amyloid beta-proteins (Abetas) (Abeta43 and Abeta46) in CHO cells that are induced to express the beta C-terminal fragment (CTF). To learn more about the cleavage mechanism by gamma-secretase, CHO cell lines coexpressing betaCTF and wild-type or mutant presenilin (PS) 1/2 were generated and treated with DAPT. In all cell lines treated with DAPT, as the levels of Abeta40 decreased, Abeta46 accumulated to varying extents. In wild-type PS1 or M146L mutant PS1 cells, substantial amounts of Abeta43 and Abeta46 accumulated. In contrast, this was not the case with wild-type PS2 cells. In M233T mutant PS1 cells, significant amounts of Abeta46 and Abeta48 accumulated differentially, whereas in N141I mutant PS2 cells, large amounts of Abeta45 accumulated concomitantly with a large decrease in Abeta42 levels. Most interestingly, in G384A mutant PS1 cells, there were no significant accumulations of longer Abetas except for Abeta46. Abeta40 was very susceptible to DAPT, but other Abetas were variably resistant. Complicated suppression and accumulation patterns by DAPT may be explained by stepwise processing of betaCTF from a zeta- or epsilon-cleavage site to a gamma-cleavage site and its preferential suppression of gamma-cleavage over zeta- or epsilon-cleavage.  相似文献   

18.
Most mutations in amyloid precursor proteins (APPs) linked to early onset familial Alzheimer's disease (FAD) increase the production of amyloid-beta peptides ending at residue 42 (Abeta42), which are released from APP by beta- and gamma-secretase cleavage. Stably transfected cells expressing wild-type human APP (APP(WT)) were more resistant to apoptosis-inducing treatments than cells expressing FAD-mutant human APP (APP(FAD)). Preventing Abeta42 production with an M596I mutation (beta-), which blocks beta-secretase cleavage of APP, or by treatment with a gamma-secretase inhibitor increased the resistance of APP(FAD)-expressing cells to apoptosis. Exposing hAPP(FAD/beta-) cells to exogenous Abeta42 or conditioned medium from Abeta42-producing APP(FAD) cells did not diminish their resistance to apoptosis. Preventing APP from entering the distal secretory pathway, where most Abeta peptides are generated, by retaining APP in the endoplasmic reticulum (ER)/intermediate compartment (IC) increased the resistance of APP(FAD)-expressing cells to apoptosis and did not alter the resistance of APP(WT)-expressing cells. p53-mediated gene transactivation after apoptosis-inducing treatments was much stronger in APP(FAD) cells than in hAPP(WT) or hAPP(FAD/beta-) cells. In contrast, upon induction of ER stress, cells expressing APP(FAD), hAPP(FAD/beta-), or APP(WT) had comparable levels of glucose-regulated protein-78 mRNA, an unfolded protein response indicator. We conclude that Abeta, especially intracellular Abeta, counteracts the antiapoptotic function of its precursor protein and predisposes cells to p53-mediated, and possibly other, proapoptotic pathways.  相似文献   

19.
Miravalle L  Calero M  Takao M  Roher AE  Ghetti B  Vidal R 《Biochemistry》2005,44(32):10810-10821
Cotton wool plaques (CWPs) are round lesions that lack a central amyloid core. CWPs have been observed in individuals affected by early-onset familial Alzheimer disease (FAD) associated with mutations in the presenilin 1 (PSEN1) gene. Here we present the characterization of the amyloid-beta (Abeta) peptides deposited in the brain of an individual affected by FAD carrying the novel missense (V261I) mutation in the PSEN1 gene. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to determine the Abeta peptide species present in the cerebral and cerebellar cortices, in leptomeningeal vessels, and in CWPs isolated by laser microdissection (LMD). Our results indicate that amino-terminally truncated Abeta peptide species ending at residues 42 and 43 are the main Abeta peptides deposited in brain parenchyma and LMD-CWPs in association with the PSEN1 V261I mutation. Full-length Abeta1-42 and Abeta1-43 peptide species were underrepresented. CWPs were not found to be associated with vessels and did not contain Abeta1-40 peptides, the main component of the vascular deposits. Although Abeta deposits were present mostly in the form of CWPs in the cerebral cortex and as diffuse deposits in the cerebellar cortex, a similar array of amino-terminally truncated Abeta peptide species was seen in both cases. The biochemical data support the concept that parenchymal and vascular amyloid deposits are associated with a different array of Abeta peptide species. The generation and parenchymal deposition of highly insoluble amino-terminally truncated Abeta peptides may play an important role in the pathogenesis of AD and must be taken into consideration in developing new diagnostic and therapeutic strategies.  相似文献   

20.
We showed previously that cells expressing wild-type (WT) beta-amyloid precursor protein (APP) or coexpressing WTAPP and WT presenilin (PS) 1/2 produced APP intracellular domains (AICD) 49-99 and 50-99, with the latter predominating. On the other hand, the cells expressing mutant (MT) APP or coexpressing WTAPP and MTPS1/2 produced a greater proportion of AICD-(49-99) than AICD-(50-99). In addition, the expression of amyloid beta-protein (Abeta) 49 in cells resulted in predominant production of Abeta40 and that of Abeta48 leads to preferential production of Abeta42. These observations suggest that epsilon-cleavage and gamma-cleavage are interrelated. To determine the stoichiometry between Abeta and AICD, we have established a 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid-solubilized gamma-secretase assay system that exhibits high specific activity. By using this assay system, we have shown that equal amounts of Abeta and AICD are produced from beta-carboxyl-terminal fragment (C99) by gamma-secretase, irrespective of WT or MTAPP and PS1/2. Although various Abeta species, including Abeta40, Abeta42, Abeta43, Abeta45, Abeta48, and Abeta49, are generated, only two species of AICD, AICD-(49-99) and AICD-(50-99), are detected. We also have found that M233T MTPS1 produced only one species of AICD, AICD-(49-99), and only one for its counterpart, Abeta48, in contrast to WT and other MTPS1s. These strongly suggest that epsilon-cleavage is the primary event, and the produced Abeta48 and Abeta49 rapidly undergo gamma-cleavage, resulting in generation of various Abeta species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号