首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Recently, development ofa caveolin-1-deficient (Cav-1 null) mouse model has allowed thedetailed analysis of caveolin-1's function in the context of awhole animal. Interestingly, we now report that the hearts ofCav-1 null mice are markedly abnormal, despite the fact that caveolin-1is not expressed in cardiac myocytes. However, caveolin-1 is abundantlyexpressed in the nonmyocytic cells of the heart, i.e., cardiacfibroblasts and endothelia. Quantitative imaging studies of Cav-1 nullhearts demonstrate a significantly enlarged right ventricular cavityand a thickened left ventricular wall with decreased systolic function.Histological analysis reveals myocyte hypertrophy withinterstitial/perivascular fibrosis. Because caveolin-1 is thought toact as a negative regulator of the p42/44 MAP kinase cascade, weperformed Western blot analysis with phospho-specific antibodies thatonly recognize activated ERK1/2. As predicted, the p42/44 MAP kinasecascade is hyperactivated in Cav-1 null heart tissue (i.e.,interstitial fibrotic lesions) and isolated cardiac fibroblasts. Inaddition, endothelial and inducible nitric oxide synthase levels aredramatically upregulated. Thus loss of caveolin-1 expression drivesp42/44 MAP kinase activation and cardiac hypertrophy.

  相似文献   

2.
3.
Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy.  相似文献   

4.
The mitogen activated protein kinase (MAPK) signaling pathway regulates multiple events leading to heart failure including ventricular remodeling, contractility, hypertrophy, apoptosis, and fibrosis. The regulation of conserved intrinsic inhibitors of this pathway is poorly understood. We recently identified an up-regulation of Sprouty1 (Spry1) in a targeted approach for novel inhibitors of the MAPK signaling pathway in failing human hearts following reverse remodeling. The goal of this study was to test the hypothesis that up-regulated expression of Spry1 in cardiac myocytes would be sufficient to inhibit ERK1/2 activation and tissue remodeling. We established a murine model with up-regulated Spry1 expression in cardiac myocytes using the alpha-myosin heavy chain promoter (α-MHC). Heart weight and cardiac myocyte morphology were unchanged in adult male α-MHC–Spry1 mice compared to control mice. Ventricular function of α-MHC–Spry1 mice was unaltered at 8 weeks or 1 year of age. These findings were consistent with the lack of an effect of Spry1 on ERK1/2 activity. In summary, targeted up-regulation of Spry1 in cardiac myocytes is not sufficient to alter cell or tissue remodeling consistent with the lack of an effect on ERK1/2 activity.  相似文献   

5.
Li Y  Luo J  Lau WM  Zheng G  Fu S  Wang TT  Zeng HP  So KF  Chung SK  Tong Y  Liu K  Shen J 《PloS one》2011,6(8):e22901
In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O2 for 24 h and then switched to 21% O2 for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O2. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs.  相似文献   

6.
Duchenne muscular dystrophy (DMD) is a progressive and fatal disease of muscle wasting caused by loss of the cytoskeletal protein dystrophin. In the heart, DMD results in progressive cardiomyopathy and dilation of the left ventricle through mechanisms that are not fully understood. Previous reports have shown that loss of dystrophin causes sarcolemmal instability and reduced mechanical compliance of isolated cardiac myocytes. To expand upon these findings, here we have subjected the left ventricles of dystrophin-deficient mdx hearts to mechanical stretch. Unexpectedly, isolated mdx hearts showed increased left ventricular (LV) compliance compared to controls during stretch as LV volume was increased above normal end diastolic volume. During LV chamber distention, sarcomere lengths increased similarly in mdx and WT hearts despite greater excursions in volume of mdx hearts. This suggests that the mechanical properties of the intact heart cannot be modeled as a simple extrapolation of findings in single cardiac myocytes. To explain these findings, a model is proposed in which disruption of the dystrophin-glycoprotein complex perturbs cell-extracellular matrix contacts and promotes the apparent slippage of myocytes past each other during LV distension. In comparison, similar increases in LV compliance were obtained in isolated hearts from β-sarcoglycan-null and laminin-α(2) mutant mice, but not in dysferlin-null mice, suggesting that increased whole-organ compliance in mdx mice is a specific effect of disrupted cell-extracellular matrix contacts and not a general consequence of cardiomyopathy via membrane defect processes. Collectively, these findings suggest a novel and cell-death independent mechanism for the progressive pathological LV dilation that occurs in DMD.  相似文献   

7.
8.
Upon induction of cyclooxygenase-2 (COX-2), neonatal ventricular myocytes (VMs) mainly synthesize prostaglandin E2 (PGE2). The biological effects of PGE2 are mediated through four different G protein-coupled receptor (GPCR) subtypes (EP(1-4)). We have previously shown that PGE2 stimulates cAMP production and induces hypertrophy of VMs. Because the EP4 receptor is coupled to adenylate cyclase and increases in cAMP, we hypothesized that PGE2 induces hypertrophic growth of cardiac myocytes through a signaling cascade that involves EP4-cAMP and activation of protein kinase A (PKA). To test this, we used primary cultures of VMs and measured [3H]leucine incorporation into total protein. An EP4 antagonist was able to partially block PGE2 induction of protein synthesis and prevent PGE2-dependent increases in cell surface area and activity of the atrial natriuretic factor promoter, which are two other indicators of hypertrophic growth. Surprisingly, a PKA inhibitor had no effect. In other cell types, G protein-coupled receptor activation has been shown to transactivate the epidermal growth factor receptor (EGFR) and result in p42/44 mitogen-activated protein kinase (MAPK) activation and cell growth. Immunoprecipitation of myocyte lysates demonstrated that the EGFR was rapidly phosphorylated by PGE2 in VMs, and the EP4 antagonist blocked this. In addition, the selective EGFR inhibitor AG-1478 completely blocked PGE2-induced protein synthesis. We also found that PGE2 rapidly phosphorylated p42/44 MAPK, which was inhibited by the EP4 antagonist and by AG-1478. Finally, the p42/44 MAPK inhibitor PD-98053 (25 micromol/l) blocked PGE2-induced protein synthesis. Altogether, we believe these are the first data to suggest that PGE2 induces protein synthesis in cardiac myocytes in part via activation of the EP4 receptor and subsequent activation of p42/44 MAPK. Activation of p42/44 MAPK is independent of the common cAMP-PKA pathway and involves EP4-dependent transactivation of EGFR.  相似文献   

9.
Cardiac hypertrophy and ensuing heart failure are among the most common causes of mortality worldwide, yet the triggering mechanisms for progression of hypertrophy to failure are not fully understood. Tissue homeostasis depends on proper relationships between cell proliferation, differentiation, and death and any imbalance between them results in compromised cardiac function. Recently, we developed a transgenic (Tg) mouse model that overexpress myotrophin (a 12-kDa protein that stimulates myocyte growth) in heart resulting in hypertrophy that progresses to heart failure. This provided us an appropriate model to study the disease process at any point from initiation of hypertrophy end-stage heart failure. We studied detailed apoptotic signaling and regenerative pathways and found that the Tg mouse heart undergoes myocyte loss and regeneration, but only at a late stage (during transition to heart failure). Several apoptotic genes were up-regulated in 9-month-old Tg hearts compared with age-matched wild type or 4-week-old Tg hearts. Cardiac cell death during heart failure involved activation of Fas, tumor necrosis factor-alpha, and caspases 9, 8, and 3 and poly(ADP-ribose) polymerase cleavage. Tg mice with hypertrophy associated with compromised function showed significant up-regulation of cyclins,cyclin-dependent kinases (Cdks), and cell regeneration markers in myocytes. Furthermore, in human failing and nonfailing hearts, similar observations were documented including induction of active caspase 3 and Ki-67 proteins in dilated cardiomyopathic myocytes. Taken together, our data suggest that the stress of extensive myocardial damage from longstanding hypertrophy may cause myocytes to reenter the cell cycle. We demonstrate, for the first time in an animal model, that cell death and regeneration occur simultaneously in myocytes during end-stage heart failure, a phenomenon not observed at the onset of the disease process.  相似文献   

10.
Poly(ADP-ribose) polymerase-1 (PARP-1) plays a pivotal role in regulating genome stability, cell cycle progression, and cell survival. However, overactivation of PARP has been shown to contribute to cell death and organ failure in various stress-related disease conditions. In this study, we examined the role of PARP in the development and progression of cardiac hypertrophy. We measured the expression of PARP in mouse hearts with physiological (swimming exercise) and pathological (aortic banding) cardiac hypertrophy as well as in human heart samples taken at the time of transplantation. PARP levels were elevated both in swimming and banded mice hearts and demonstrated a linear positive correlation with the degree of cardiac hypertrophy. A dramatic increase (4-fold) of PARP occurred in 6-wk banded mice, accompanied by apparent signs of ventricular dilation and myocyte cell death. PARP levels were also elevated (2- to 3-fold) in human hearts with end-stage heart failure compared with controls. However, we found no evidence of caspase-mediated PARP cleavage in either mouse or human failing hearts. Overexpression of PARP in primary cultures of cardiac myocytes led to suppression of gene expression and robust myocyte cell death. Furthermore, data obtained from the analysis of PARP knockout mice revealed that these hearts produce an attenuated hypertrophic response to aortic banding compared with controls. Together, these results demonstrate a role for PARP in the onset and progression of cardiac hypertrophy and suggest that some events related to cardiac hypertrophy growth and progression to heart failure are mediated by a PARP-dependent mechanism.  相似文献   

11.
Nontoxic concentrations of ouabain, causing partial inhibition of the cardiac myocyte Na(+)/K(+)-ATPase, induce hypertrophy and several growth-related genes through signal pathways that include the activation of Ras and p42/44 mitogen-activated protein kinase (MAPK). The aim of this work was to examine the ouabain-induced events upstream of the Ras/MAPK cascade. Treatment of myocytes with genistein antagonized ouabain-induced activation of the MAPK, suggesting that protein tyrosine phosphorylation has a role. Tyrosine phosphorylation of several myocyte proteins was increased rapidly upon cell exposure to ouabain. Lowering of extracellular K(+) had a similar ouabain-like effect. Ouabain also increased protein tyrosine phosphorylation in A7r5, HeLa, and L929 cells. In cardiac myocytes and A7r5 cells, herbimycin A antagonized the ouabain-induced increase in protein tyrosine phosphorylation and MAPK activation. In both cell types, ouabain stimulated Src kinase activity, Src translocation to the Triton-insoluble fraction, Src association with the epidermal growth factor receptor, and the tyrosine phosphorylation of this receptor on site(s) other than its major autophosphorylation site, Tyr(1173). The findings suggest that (a) the ouabain-induced activation of Src and the Src-induced phosphorylation of the growth factor receptor provide the scaffolding for the recruitment of adaptor proteins and Ras and the activation of Ras/MAPK cascade; and (b) the activation of such pathways may be a common feature of the signal-transducing function of Na(+)/K(+)-ATPase in most cells.  相似文献   

12.
13.
Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure.  相似文献   

14.
In contrast to studies on skeletal and smooth muscles, the identity of kinases in the heart that are important physiologically for direct phosphorylation of myosin regulatory light chain (RLC) is not known. A Ca(2+)/calmodulin-activated myosin light chain kinase is expressed only in cardiac muscle (cMLCK), similar to the tissue-specific expression of skeletal muscle MLCK and in contrast to the ubiquitous expression of smooth muscle MLCK. We have ablated cMLCK expression in male mice to provide insights into its role in RLC phosphorylation in normally contracting myocardium. The extent of RLC phosphorylation was dependent on the extent of cMLCK expression in both ventricular and atrial muscles. Attenuation of RLC phosphorylation led to ventricular myocyte hypertrophy with histological evidence of necrosis and fibrosis. Echocardiography showed increases in left ventricular mass as well as end-diastolic and end-systolic dimensions. Cardiac performance measured as fractional shortening decreased proportionally with decreased cMLCK expression culminating in heart failure in the setting of no RLC phosphorylation. Hearts from female mice showed similar responses with loss of cMLCK associated with diminished RLC phosphorylation and cardiac hypertrophy. Isoproterenol infusion elicited hypertrophic cardiac responses in wild type mice. In mice lacking cMLCK, the hypertrophic hearts showed no additional increases in size with the isoproterenol treatment, suggesting a lack of RLC phosphorylation blunted the stress response. Thus, cMLCK appears to be the predominant protein kinase that maintains basal RLC phosphorylation that is required for normal physiological cardiac performance in vivo.  相似文献   

15.
Mitogen-activated protein kinase (MAPK) in cardiac tissues   总被引:13,自引:0,他引:13  
Mitogen-activated protein kinase (MAPK) has recently emerged as a prominent role player in intracellular signalling in the ventricular myocyte with attention being focussed on its possible role in the development of ventricular hypertrophy. It is becoming clear that MAPK is also active in other cells of cardiac origin such as cardiac fibroblasts and possible functions of this signalling pathway in the heart have yet to be explored. In this report the mammalian MAPK pathway is briefly outlined, before reviewing current knowledge of the MAPK pathway in cardiac tissue (ventricular myocytes, vascular smooth muscle cells and cardiac fibroblasts). New data is also presented on the presence and activity of MAPK in two additional cardiac celltypes namely atrial myocytes and vascular endothelial cells from the coronary microcirculation. (Mol Cell Biochem 157: 49–57, 1996)  相似文献   

16.
17.
Our previous studies on cardiac myocytes showed that positive inotropic concentrations of the digitalis drug ouabain activated signaling pathways linked to Na(+)-K(+)-ATPase through Src and epidermal growth factor receptor (EGFR) and led to myocyte hypertrophy. In view of the known involvement of phosphatidylinositol 3-kinase (PI3K)-Akt pathways in cardiac hypertrophy, the aim of the present study was to determine whether these pathways are also linked to cardiac Na(+)-K(+)-ATPase and, if so, to assess their role in ouabain-induced myocyte growth. In a dose- and time-dependent manner, ouabain activated Akt and phosphorylation of its substrates mammalian target of rapamycin and glycogen synthase kinase in neonatal rat cardiac myocytes. Akt activation by ouabain was sensitive to PI3K inhibitors and was also noted in adult myocytes and isolated hearts. Ouabain caused a transient increase of phosphatidylinositol 3,4,5-trisphosphate content of neonatal myocytes, activated class IA, but not class IB, PI3K, and increased coimmunoprecipitation of the alpha-subunit of Na(+)-K(+)-ATPase with the p85 subunit of class IA PI3K. Ouabain-induced activation of ERK1/2 was prevented by Src, EGFR, and MEK inhibitors, but not by PI3K inhibitors. Activation of Akt by ouabain, however, was sensitive to inhibitors of PI3K and Src, but not to inhibitors of EGFR and MEK. Similarly, ouabain-induced myocyte hypertrophy was prevented by PI3K and Src inhibitors, but not by an EGFR inhibitor. These findings 1) establish the linkage of the class IA PI3K-Akt pathway to Na(+)-K(+)-ATPase and the essential role of this linkage to ouabain-induced myocyte hypertrophy and 2) suggest cross talk between these PI3K-Akt pathways and the signaling cascades previously identified to be associated with cardiac Na(+)-K(+)-ATPase.  相似文献   

18.
本工作在大体动物模型、细胞及分子水平上,对钙调神经磷酸酶(CaN)依赖的信号通路在大鼠豳肥大中的作用及其调节机制进行了研究。结果发现;(1)CaN信号通路参与血流动力学超负荷、心肌纤维化、旁/自分泌因子等诱导的心肌细胞肥大;(2)CaN信号通道参与血管紧张素Ⅱ(AngⅡ)及碱性成纤维细胞因子(bFGF)诱导的心肌细胞肥大和AngⅡ及bFGF刺激的心脏成纤维细胞增殖;(3)CaN通路与丝裂素活化蛋白激酶(MAPK)及蛋白激酶C(PKC)信号途径可能存在相互关系;(4)CaN的活化依赖胞内Ca^2 浓度的持续升高,CaN的活化还受蛋白激酶磷酸化的调节,AngⅡ刺激心肌细胞CaNmRNA的表达显著增加,CaNmRNA本身的表达受Ca^2 信号及MAPK级联反应的调控。结论:Ca^2 -CaN信号通路介导心肌肥大的发生。  相似文献   

19.
Spangenburg EE  Booth FW 《Cytokine》2006,34(3-4):125-130
Cytokines and growth factors are thought to contribute to skeletal muscle hypertrophy. Leukemia inhibitory factor (LIF), a cytokine, enhances skeletal muscle regeneration; however the role of LIF in skeletal muscle hypertrophy remains uncertain. We examined the hypertrophic ability of the plantaris and soleus muscles in wild-type mice (WT) and LIF knock-out mice [LIF(-/-)] in response to increased mechanical load. Using the functional overload model to induce increases in mechanical load on the plantaris and soleus muscle, WT mice demonstrated increases in plantaris and soleus mass after 7, 21, and 42 days of loading. However, the LIF(-/-) mice had no significant increases in plantaris muscle mass at any time point, while the soleus muscle exhibited a delayed hypertrophic response. Systemic delivery of LIF to the LIF(-/-) mice returned the hypertrophic response to the same levels as the WT mice after 21 days of functional overload. These data demonstrate for the first time that LIF expression in loaded skeletal muscle is critical for the development of skeletal muscle hypertrophy in the functional overload model.  相似文献   

20.
Chronic airways diseases, including asthma, are associated with an increased airway smooth muscle (ASM) mass, which may contribute to chronic airway hyperresponsiveness. Increased muscle mass is due, in part, to increased ASM proliferation, although the precise molecular mechanisms for this response are not completely clear. Caveolae, which are abundant in smooth muscle cells, are membrane microdomains where receptors and signaling effectors can be sequestered. We hypothesized that caveolae and caveolin-1 play an important regulatory role in ASM proliferation. Therefore, we investigated their role in p42/p44 MAPK signaling and proliferation using human ASM cell lines. Disruption of caveolae using methyl-beta-cyclodextrin and small interfering (si)RNA-knockdown of caveolin-1 caused spontaneous p42/p44 MAPK activation; additionally, caveolin-1 siRNA induced ASM proliferation in mitogen deficient conditions, suggesting a key role for caveolae and caveolin-1 in maintaining quiescence. Moreover, caveolin-1 accumulates twofold in myocytes induced to a contractile phenotype compared with proliferating ASM cells. Caveolin-1 siRNA failed to increase PDGF-induced p42/p44 MAPK activation and cell proliferation, however, indicating that PDGF stimulation actively reversed the antimitogenic control by caveolin-1. Notably, the PDGF induced loss of antimitogenic control by caveolin-1 coincided with a marked increase in caveolin-1 phosphorylation. Furthermore, the strong association of PDGF receptor-beta with caveolin-1 that exists in quiescent cells was rapidly and markedly reduced with agonist addition. This suggests a dynamic relationship in which mitogen stimulation actively reverses caveolin-1 suppression of p42/p44 MAPK signal transduction. As such, caveolae and caveolin-1 coordinate PDGF receptor signaling, leading to myocyte proliferation, and inhibit constitutive activity of p42/p44 MAPK to sustain cell quiescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号