首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maize proteinase inhibitor (mpi) gene was introduced into two elite japonica rice varieties. Both constitutive expression of the mpi gene driven by the maize ubiquitin 1 promoter and wound-inducible expression of the mpi gene driven by its own promoter resulted in the accumulation of MPI protein in the transgenic plants. No effect on plant phenotype was observed in mpi-expressing lines. The stability of transgene expression through successive generations of mpi rice lines (up to the T(4) generation) and the production of functional MPI protein were confirmed. Expression of the mpi gene in rice enhanced resistance to the striped stem borer (Chilo suppressalis), one of the most important pests of rice. In addition, transgenic mpi plants were evaluated in terms of their effects on the growth of C. suppressalis larvae and the insect digestive proteolytic system. An important dose-dependent reduction of larval weight of C. suppressalis larvae fed on mpi rice, compared with larvae fed on untransformed rice plants, was observed. Analysis of the digestive proteolytic activity from the gut of C. suppressalis demonstrated that larvae adapted to mpi transgene expression by increasing the complement of digestive proteolytic activity: the serine and cysteine endoproteinases as well as the exopeptidases leucine aminopeptidase and carboxypeptidases A and B. However, the induction of such proteolytic activity did not prevent the deleterious effects of MPI on larval growth. The introduction of the mpi gene into rice plants can thus be considered as a promising strategy to protect rice plants against striped stem borer.  相似文献   

2.
Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot‐and‐mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound‐ and pathogen‐inducible mpi promoter. The mpi‐pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi‐pci rice, compared with larvae fed on wild‐type plants, was observed. Expression of the mpi‐pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi‐pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi‐pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi‐pci fusion gene for dual resistance against insects and pathogens in rice plants.  相似文献   

3.
The development of transgenic maize plants expressing soybean proteinase inhibitors could reduce the economic damage of one of the major maize pests in Brazil, the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797). We examined the influence of soybean proteinase inhibitors on digestive enzyme properties and development of S. frugiperda larvae. The inhibition of trypsin and chymotrypsin activities in vitro by soybean proteinase inhibitors suggested that either Kunitz (SBTI) or Bowman-Birk (SBBI) would have a potential antimetabolic effect when ingested by insect larvae. However, chronic ingestion of semipurified soybean inhibitors did not result in a significant reduction of growth and development of fall armyworm. Therefore, digestive serine proteinase activities (trypsin and chymotrypsin) of fall armyworm larvae were characterized. The results suggest that S. frugiperda was able to physiologically adapt to dietary proteinase inhibitors by altering the complement of proteolytic enzymes in the insect midguts.  相似文献   

4.
5.
A low molecular weight protease inhibitor peptide found in ovaries of the desert locust Schistocerca gregaria (SGPI-2), was purified from plasma of the same locust and sequenced. It was named SGCI. It was found active towards chymotrypsin and human leukocyte elastase. SGCI was synthesized using a solid-phase procedure and the sequence of its reactive site for chymotrypsin was determined. Compared with an inhibitor purified earlier from another locust species, the total sequence of SGCI showed 88% identity. In particular, the sequence of the reactive site of these inhibitors was identical. Our search for a closely related peptide in an insect species far removed from locusts, the lepidopteran Spodoptera littoralis, was unfruitful but a different chymotrypsin inhibitor, belonging to the Kazal family, was found whose mass is greater than that of SGCI (20 vs 3.6 kDa). Its N-terminal sequence shares 80% identity with that of a chymotrypsin inhibitor purified earlier from the haemolymph of another lepidopteran. Conservation of the amino acid sequence in the reactive site seems to be an exception among protease inhibitors.  相似文献   

6.
Proteinaceous aspartic proteinase inhibitors are rare in nature and are described in only a few plant species. One of them corresponds to a family of cathepsin D inhibitors (CDIs) described in potato (Solanum tuberosum), involving up to 15 isoforms with a high sequence similarity. In this work, we describe a tomato (Solanum lycopersicum) wound-inducible protein called jasmonic-induced protein 21 (JIP21). Sequence analysis of its cDNA predicted a putative function as a CDI. The JIP21 gene, whose protein has been demonstrated to be glycosylated, is constitutively expressed in flowers, stem, and fruit, and is inducible to high levels by wounding and methyl jasmonate in leaves of tomato plants. The genomic sequence of JIP21 shows that the gene is intronless and reveals the presence of both a methyl jasmonate box (TGACT) and a G-box (CACGT) in the promoter. In contrast to the presumed role of JIP21 based on sequence analysis, a detailed biochemical characterization of the purified protein uncovers a different function as a strong chymotrypsin inhibitor, which questions the previously predicted inhibitory activity against aspartic proteinases. Moreover, Egyptian cotton worm (Spodoptera littoralis) larvae fed on transgenic tomato plants overexpressing JIP21 present an increase in mortality and a delay in growth when compared with larvae fed on wild-type plants. These larvae belong to the Lepidoptera family whose main digestive enzymes have been described as being Ser proteases. All these results support the notion that tomato JIP21 should be considered as a chymotrypsin inhibitor belonging to the Ser proteinase inhibitors rather than a CDI. Therefore, we propose to name this protein tomato chymotrypsin inhibitor 21 (TCI21).  相似文献   

7.
8.
A novel chymotrypsin which is expressed in the midgut of the lepidopteran insect Spodoptera exigua is described. This enzyme, referred to as SeCT34, represents a novel class of chymotrypsins. Its amino-acid sequence shares common features of gut chymotrpysins, but can be clearly distinguished from other serine proteinases that are expressed in the insect gut. Most notable, SeCT34 contains a chymotrypsin activation site and the highly conserved motive DSGGP in the catalytic domain around the active-site serine is changed to DSGSA. Recombinant expression of SeCT34 was achieved in Sf21 insect cells using a special baculovirus vector, which has been engineered for optimized protein production. This is the first example of recombinant expression of an active serine proteinase which functions in the lepidopteran digestive tract. Purified recombinant SeCT34 enzyme was characterized by its ability to hydrolyze various synthetic substrates and its susceptibility to proteinase inhibitors. It appeared to be highly selective for substrates carrying a phenylalanine residue at the cleavage site. SeCT34 showed a pH-dependence and sensitivity to inhibitors, which is characteristic for semi-purified lepidopteran gut proteinases. Expression analysis revealed that SeCT34 was only expressed in the midgut of larvae at the end of their last instar, just before the onset of pupation. This suggests a possible role of this protein in the proteolytic remodelling that occurs in the gut during the larval to pupal molt.  相似文献   

9.
Protease inhibitors mediate a natural form of plant defence against insects, by interfering with the digestive system of the insect. In this paper, affinity chromatography was used to isolate trypsins and chymotrypsins from Helicoverpa zea larvae, which had been raised on inhibitor-containing diet. Sensitivity of the fractions to inhibition by plant proteinase inhibitors was tested, and compared to the sensitivity of proteinases found in insects raised on diet to which no inhibitor had been added. The isolated chymotrypsin activity was found to be less sensitive to plant protease inhibitors. The sensitivity of the isolated trypsin activity was found to be intermediate between completely sensitive trypsins and completely insensitive forms that have been previously described. Mass spectrometry was used to identify one trypsin and two chymotrypsins in the partially purified protease fraction. The sequence features of these proteases are discussed in relation to their sensitivity to inhibitors. The results provide insight in the enzymes deployed by Helicoverpa larvae to overcome plant defence.  相似文献   

10.
A giant taro proteinase inhibitor (GTPI) cDNA was expressed in transgenic tobacco using three different gene constructs. The highest expression level obtained was ca. 0.3% of total soluble protein when the cDNA was driven by the Arabidopsis rbcS ats1 promoter. Repeated feeding trials with Helicoverpa armigera larvae fed on clonally derived T0 and T1 plants expressing GTPI demonstrated that, relative to those fed on control plants, some growth inhibition (22–40%) occurs, but there was no increase in larval mortality. Proteinase activities of larvae fed on GTPI-expressing tobacco or GTPI-containing diet were examined to monitor the spectrum of digestive proteinases in the midgut. Total proteinase activity was reduced by 13%, but GTPI-insensitive proteinase activity was increased by up to 17%. Trypsin was inhibited by 58%, but chymotrypsin and elastase were increased by 26% and 16% respectively. These results point to an adaptive mechanism in this insect that elevates the levels of other classes of proteinases to compensate for the trypsin activity inhibited by dietary proteinase inhibitors.  相似文献   

11.
12.
The natural defence system of plants often involves inhibitors of digestive enzymes of their pests. Modem and environmental-friendly methods try to increase this plant resistance by expressing heterologous protease inhibitors in crops. Here we report the effects of expressing a gene from desert locust (Schistocerca gregaria) encoding two serine protease inhibitors in potato on Colorado potato beetle (Leptinotarsa decemlineata) larvae. The gene encoding both peptides on a single chain was used for Agrobacterium-mediated transformation of potato plants. The presence of the active inhibitor protein in the leaves was verified. The feeding bioassays in the laboratory showed that despite the low level of the peptide in leaves, CPB larvae on transgenic plants have grown slightly but significantly more slowly than those on control potato plants. The results support the notion that expression of multifunctional proteinase inhibitors of insect origin in plants might be a good strategy to improve insect resistance.  相似文献   

13.
The proteinases in the midguts of three scarab white grub species, Lepidiota noxia, L. negatoria, and Antitrogus consanguineus, were investigated to classify the proteinases present and to determine the most effective proteinase inhibitor for potential use as an insect control agent. pH activity profiles indicated the presence of serine proteinases and the absence of cysteine proteinases. This was confirmed by the lack of inhibition by specific cysteine proteinase inhibitors. Trypsin, chymotrypsin, elastase, and leucine aminopeptidase activities were detected by using specific synthetic substrates. A screen of 32 proteinase inhibitors produced 9 inhibitors of trypsin, chymotrypsin, and elastase which reduced proteolytic activity by greater than 75%. © 1995 Wiley-Liss, Inc.  相似文献   

14.
15.
Lepidopteran insects like Helicoverpa zea and Agrotis ipsilon produce STI-insensitive trypsins in the midgut following ingestion of dietary plant proteinase inhibitors like STI [Broadway, R. M., J. Insect Physiol. 43(9) (1997) 855-874]. In this paper, the effects of dietary STI on a related family of midgut serine proteinases, the chymotrypsins, were investigated. STI-insensitive midgut chymotrypsins were detected in larvae of H. zea and A. ipsilon feeding on diets containing 1% STI while STI-sensitive chymotrypsins were present in larvae feeding on diets containing 0% STI. These chymotrypsins were unaffected by TPCK, a diagnostic inhibitor of mammalian chymotrypsins but were fully inhibited by chymostatin. Four midgut cDNA libraries were constructed from larvae of each species fed either 0% STI or 1% STI diets. Six full-length cDNAs(1) encoding diverse preprochymotrypsins were isolated (three from H. zea and three from A. ipsilon) with certain sequence motifs that set them apart from their mammalian counterparts. Northern blots showed that some chymotrypsin mRNA were detected at higher levels while others were down-regulated when comparing insects reared on 0% STI and 1% STI diets. Southern hybridizations suggested that (like mammals) both species contained several chymotrypsin genes. A full-length chymotrypsin gene(1) from H. zea was sequenced for the first time and the presence of four introns was deduced. A first time comparison of 5' upstream regions(1) from three chymotrypsin genes and two trypsin genes of A. ipsilon indicated the presence of putative TATA boxes and regulatory elements. However a lack of consensus motifs in these upstream regions suggested the likelihood of multiple trans factors for regulation of genes encoding digestive proteinases and a complex response mechanism linked to ingestion of proteinase inhibitors.  相似文献   

16.
Three different serine proteinase inhibitors were isolated from rat serum and purified to apparent homogeneity. One of the inhibitors appears to be homologous to alpha 1-proteinase inhibitor isolated from man and other species, but the other two, designated rat proteinase inhibitor I and rat proteinase inhibitor II, seem to have no human counterpart. alpha 1-Proteinase inhibitor (Mr 55000) inhibits trypsin, chymotrypsin and elastase, the three serine proteinases tested. Rat proteinase inhibitor I (Mr 66000) is active towards trypsin and chymotrypsin, but is inactive towards elastase. Rat proteinase inhibitor II (Mr 65000) is an effective inhibitor of trypsin only. Their contributions to the trypsin-inhibitory capacity of rat serum are about 68, 14 and 18% for alpha 1-proteinase inhibitor, rat proteinase inhibitor I and rat proteinase inhibitor II respectively.  相似文献   

17.
Abstract  Bitter gourd ( Momordica charantia L.) seeds contain several squash-type serine proteinase inhibitors (PIs), which inhibit the digestive proteinases of the polyphagous insect pest Helicoverpa armigera . In the present work isolation of a DNA sequence encoding the mature peptide of a trypsin inhibitor McTI-II, its cloning and expression as a recombinant protein using Pichia pastoris have been reported. Recombinant McTI-II inhibited bovine trypsin at 1: 1 molar ratio, as expected, but did not inhibit chymotrypsin or elastase. McTI-II also strongly inhibited trypsin-like proteinases (81% inhibition) as well as the total proteolytic activity of digestive proteinases (70% inhibition) from the midgut of H. armigera larvae. The insect larvae fed with McTI-II-incorporated artificial diet suffered over 70% reduction in the average larval weight after 12 days of feeding. Moreover, ingestion of McTI-II resulted in 23% mortality in the larval population. The strong antimetabolic activity of McTI-II toward H. armigera indicates its probable use in developing insect tolerance in susceptible plants.  相似文献   

18.
A member of the potato proteinase inhibitor II (PPI II) gene family that encodes for a chymotrypsin iso-inhibitor has been introduced into tobacco (Nicotiana tabacum) usingAgrobacterium tumefaciens-mediated T-DNA transfer. Analysis of the primary transgenic plants (designated R0) confirmed that the introduced gene is being expressed and the inhibitor accumulates as an intact and fully functional protein. For insect feeding trials, progeny from the self-fertilization of R0 plants (designated R1) were used. Leaf tissue, either from transgenic or from control (non-transgenic) plants, was fed to larvae ofChrysodeixis eriosoma (Lepidoptera: Noctuidae, green looper),Spodoptera litura (F.) (Lepidoptera: Noctuidae) andThysanoplusia orichalcea (F.) (Lepidoptera: Noctuidae) and insect weight gain (increase in fresh weight) measured. Consistently,C. eriosoma larvae fed leaf tissue from transgenic plants expressing thePPI II gene grew slower than insects fed leaf tissue from non-transgenic plants or transgenic plants with no detectablePPI II protein accumulation. However, larvae of bothS. litura andT. orichalcea consistently demonstrated similar or faster growth when fed leaf tissue from transgenic plants compared with those fed non-transgenic plants. In agreement with the feeding trials, the chymotrypsin iso-inhibitor extracted from transgenic tobacco effectively retarded chymotrypsin-like activity measured inC. eriosoma digestive tract extracts, but not in extracts fromS. litura. We conclude, therefore, that for certain insects the use of chymotrypsin inhibitors should now be evaluated as an effective strategy to provide field resistance against insect pests in transgenic plants, but further, that a single proteinase inhibitor gene may not be universally effective against a range of insect pests. The significance of these observations is discussed with respect to the inclusion of chymotrypsin inhibitors in the composite of insect pest resistance factors that have been proposed for introduction into crop plants.  相似文献   

19.
Proteinase inhibitor (PI) accumulation has been described as a plant defense response against insects and pathogens. The induction of PIs is known to be regulated by endogenous chemical factors including phytohormones. We studied the induction of barley chymotrypsin and trypsin inhibitory activities by aphid infestation, mechanical wounding, abscisic acid (ABA) and jasmonic acid (JA). Wounding experiments led to a minimal accumulation of PI activity (16% over controls) compared to that found in barley seedlings infested by aphids, where chymotrypsin inhibitor activity showed a two-fold increment. No systemic induction could be detected in healthy leaves of an infested or mechanically injured plant. Exogenous ABA applied on barley leaves increased the chymotrypsin inhibitory activity, while JA only increased trypsin inhibitory activity locally and systemically when applied exogenously. Our data suggest that two different mechanisms may be regulating the induction of these two types of inhibitors.  相似文献   

20.
Proteolytic activities in soluble protein extracts from Mamestra brassicae (cabbage moth) larval midgut were analysed using specific peptide substrates and proteinase inhibitors. Serine proteinases were the major activities detected, with chymotrypsin-like and trypsin-like activities being responsible for approximately 62% and 19% of the total proteolytic activity towards a non-specific protein substrate. Only small amounts of elastase-like activities could be detected. The serine proteinases were active across the pH range 7-12.5, with both trypsin-like and chymotrypsin-like activities maximal at pH 11.5. The digestive proteinases were stable to the alkaline environment of the lepidopteran gut over the timescale of passage of food through the gut, with 50% of trypsin and 40% of chymotrypsin activity remaining after 6h at pH 12, 37 degrees C. Soybean Kunitz trypsin inhibitor (SKTI) ingestion by the larvae had a growth-inhibitory effect, and induced inhibitor-insensitive trypsin-like activity. Qualitative and quantitative changes in proteinase activity bands after gel electrophoresis of gut extracts were evident in SKTI-fed larvae when compared with controls, with increases in levels of most bands, appearance of new bands, and a decrease in the major proteinase band present in extracts from control insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号