首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
LXR is crucial in lipid metabolism   总被引:9,自引:0,他引:9  
Liver X receptors (LXRalpha and LXRbeta) are members of the nuclear receptor superfamily and are activated by oxysterols and intermediates in the cholesterol synthetic pathway. The pivotal role of LXRs in the metabolic conversion of cholesterol to bile acids is well established. Analysis of gene expression in LXRalpha and LXRbeta deficient mice have confirmed that LXR regulates a number of target genes involved in both cholesterol and fatty acid metabolism in liver, macrophages and intestine. The observation that LXRalpha is responsive to fatty acids and is expressed in metabolic tissues suggests that it also plays a general role in lipid metabolism. Adipose tissue is the main storage site for fat in the body and plays a crucial role in overall lipid handling. Both LXRalpha and LXRbeta are expressed and activated by endogenous and synthetic ligands, which lead to lipid accumulation into adipocytes. This indicates an important regulatory role of LXR in several metabolic signaling pathways in the adipose tissue, such as glucose uptake and de novo fatty acid synthesis. Here, we review recent studies that provide new insights into the mechanisms by which LXRs act to influence fatty acid synthesis in liver and adipose tissue.  相似文献   

3.
4.
The high-cholesterol/high-fat Western diet has abetted an epidemic of atherosclerotic cardiovascular disease, the leading cause of death in industrialized nations. Liver X receptors (LXRs) are oxysterol sensors that are required for normal cholesterol and triglyceride homeostasis, yet synthetic LXR agonists produce undesirable hypertriglyceridemia. Here we report a previously unrecognized role for hepatic LXRalpha in the links between diet, serum lipids, and atherosclerosis. A modest increase in hepatic LXRalpha worsened serum lipid profiles in LDL-receptor null mice fed normal chow but had the opposite effect on lipids and afforded strong protection against atherosclerosis on a Western diet. The beneficial effect of hepatic LXRalpha was abrogated by a synthetic LXR agonist, which activated SREBP-1c and its target genes. Thus, the interplay between diet and hepatic LXRalpha is a critical determinant of serum lipid profiles and cardiovascular risk, and selective modulation of LXR target genes in liver can ameliorate hyperlipidemia and cardiovascular disease.  相似文献   

5.
Lipid accumulation by vascular smooth muscle cells (VSMC) is a feature of atherosclerotic plaques. In this study we describe two mechanisms whereby human VSMC foam cell formation is driven by de novo synthesis of fatty acids leading to triacylglycerol accumulation in intracellular vacuoles, a process distinct from serum lipoprotein uptake. VSMC cultured in adipogenic differentiation medium accumulated lipids and were induced to express the adipocyte marker genes adipsin, adipocyte fatty acid-binding protein, C/EBPalpha, PPARgamma, and leptin. However, complete adipocyte differentiation was not observed as numerous genes present in mature adipocytes were not detected, and the phenotype was reversible. The rate of lipid accumulation was not affected by PPARgamma agonists, but screening for the effects of other nuclear receptor agonists showed that activation of the liver X receptors (LXR) dramatically promoted lipid accumulation in VSMC. Both LXRalpha and LXRbeta were present in VSMC, and their activation with TO901317 resulted in induction of the lipogenic genes fatty acid synthetase, sterol regulatory element binding protein (SREBP1c), and stearoyl-CoA desaturase. 27-Hydroxycholesterol, an abundant oxysterol synthesized by VSMC acted as an LXR antagonist and, therefore, may have a protective role in preventing foam cell formation. Immunohistochemistry showed that VSMC within atherosclerotic plaques express adipogenic and lipogenic markers, suggesting these pathways are present in vivo. Moreover, the development of an adipogenic phenotype in VSMC is consistent with their known phenotypic plasticity and may contribute to their dysfunction in atherosclerotic plaques and, thus, impinge on plaque growth and stability.  相似文献   

6.
The nuclear receptors liver X receptor (LXR) alpha and LXRbeta serve as oxysterol receptors and regulate the expression of genes involved in lipid metabolism. LXR activation induces the expression of ATP-binding cassette (ABC) transporters, such as ABCG5 and ABCG8, which inhibit intestinal absorption of cholesterol and phytosterols. Although several synthetic LXR agonists have been generated, these compounds have limited clinical application, because they cause hypertriglycemia by inducing the expression of lipogenic genes in the liver. We synthesized derivatives of phytosterols and found some of them to act as LXR agonists. Among them, YT-32 [(22E)-ergost-22-ene-1alpha,3beta-diol], which is related to ergosterol and brassicasterol, is the most potent LXR agonist. YT-32 directly bound to LXRalpha and LXRbeta and induced the interaction of LXRalpha with cofactors, such as steroid receptor coactivator-1, as effectively as the natural ligands, 22(R)-hydroxycholesterol and 24(S),25-epoxycholesterol. Although the nonsteroidal synthetic LXR agonist T0901317 induced the expression of intestinal ABC transporters and liver lipogenic genes, oral administration of YT-32 selectively activated intestinal ABC transporters in mice. Unlike T0901317 treatment, YT-32 inhibited intestinal cholesterol absorption without increasing plasma triglyceride levels. The phytosterol-derived LXR agonist YT-32 might selectively modulate intestinal cholesterol metabolism.  相似文献   

7.
Liver X receptors (LXRs) regulate the expression of a number of genes involved in cholesterol and lipid metabolism after activation by their cognate oxysterol ligands. AKR1-B7 (aldo-keto reductase 1-B7) is expressed in LXR target tissues such as intestine, and because of its known role in detoxifying lipid peroxides, we investigated whether the AKR1-B7 detoxification pathway was regulated by LXRs. Here we show that synthetic LXR agonists increase the accumulation of AKR1-B7 mRNA and protein levels in mouse intestine in wild-type but not lxr(-/-) mice. Regulation of akr1b7 by retinoic X receptor/LXR heterodimers is dependent on three response elements in the proximal murine akr1b7 promoter. Two of these cis-acting elements are specific for regulation by the LXRalpha isoform. In addition, in duodenum of wild-type mice fed a synthetic LXR agonist, we observed an LXR-dependent decrease in lipid peroxidation. Our results demonstrate that akr1b7 is a direct target of LXRs throughout the small intestine, and that LXR activation plays a protective role by decreasing the deleterious effects of lipid peroxides in duodenum. Taken together, these data suggest a new role for LXRs in lipid detoxification.  相似文献   

8.
Dissection of the insulin-sensitizing effect of liver X receptor ligands   总被引:3,自引:0,他引:3  
The liver X receptors (LXRalpha and beta) are nuclear receptors that coordinate carbohydrate and lipid metabolism. Treatment of insulin-resistant mice with synthetic LXR ligands enhances glucose tolerance, inducing changes in gene expression expected to decrease hepatic gluconeogenesis (via indirect suppression of gluconeogenic enzymes) and increase peripheral glucose disposal (via direct up-regulation of glut4 in fat). To evaluate the relative contribution of each of these effects on whole-body insulin sensitivity, we performed hyperinsulinemic-euglycemic clamps in high-fat-fed insulin-resistant rats treated with an LXR agonist or a peroxisome proliferator-activated receptor gamma ligand. Both groups showed significant improvement in insulin action. Interestingly, rats treated with LXR ligand had lower body weight and smaller fat cells than controls. Insulin-stimulated suppression of the rate of glucose appearance (Ra) was pronounced in LXR-treated rats, but treatment failed to enhance peripheral glucose uptake (R'g), despite increased expression of glut4 in epididymal fat. To ascertain whether LXR ligands suppress hepatic gluconeogenesis directly, mice lacking LXRalpha (the primary isotype in liver) were treated with LXR ligand, and gluconeogenic gene expression was assessed. LXR activation decreased expression of gluconeogenic genes in wild-type and LXRbeta null mice, but failed to do so in animals lacking LXRalpha. Our observations indicate that despite inducing suggestive gene expression changes in adipose tissue in this model of diet-induced insulin resistance, the antidiabetic effect of LXR ligands is primarily due to effects in the liver that appear to require LXRalpha. These findings have important implications for clinical development of LXR agonists as insulin sensitizers.  相似文献   

9.
10.
11.
12.
The nuclear oxysterol receptors liver X receptor-alpha [LXRalpha (NR1H3)] and LXRbeta (NR1H2) coordinately regulate genes involved in cholesterol homeostasis. Although both LXR subtypes are expressed in the brain, their roles in this tissue remain largely unexplored. In this report, we show that LXR agonists have marked effects on gene expression in murine brain tissue both in vitro and in vivo. In primary astrocyte cultures, LXR agonists regulated several established LXR target genes, including ATP binding cassette transporter A1, and enhanced cholesterol efflux. In contrast, little or no effect on gene expression or cholesterol efflux was detected in primary neuronal cultures. Treatment of mice with a selective LXR agonist resulted in the induction of several LXR target genes related to cholesterol homeostasis in the cerebellum and hippocampus. These data provide the first evidence that the LXRs regulate cholesterol homeostasis in the central nervous system. Because dysregulation of cholesterol balance is implicated in central nervous system diseases such as Alzheimer's and Niemann-Pick disease, pharmacological manipulation of the LXRs may prove beneficial in the treatment of these disorders.  相似文献   

13.
The functions of the liver X receptors (LXRs) are not well documented in adipose tissue. We demonstrate here that expression of the LXRalpha gene is highly induced in vivo and in vitro in mouse and human adipocytes in the presence of the synthetic LXR agonist T0901317. This autoregulation is caused by an identified LXR-responsive element motif in the mouse LXRalpha promoter, which is conserved in the human LXRalpha promoter. Using different LXR-deficient mice, we demonstrate that the basal expression level of LXRalpha is increased in LXRbeta(-/-) mice, whereas the basal expression level of LXRbeta is unchanged in LXRalpha(-/-) mice. The two LXRs can compensate for each other in mediating ligand-activated regulation of LXR target genes involved in lipid homeostasis in adipose tissue. Sterol regulatory element binding protein-1 (SREBP-1), ATP binding cassette transporter A1 (ABCA1), ABCG1, as well as apolipoprotein E (apoE) are induced in vivo by T0901317 in wild-type, LXRalpha(-/-) or LXRbeta(-/-) mice but not in LXRalpha(-/-)beta(-/-) mice. Although SREBP-1 and ABCG1 are induced in liver, muscle, and adipose tissue, the apoE, glucose transporter-4 (GLUT4), and LXRalpha genes are specifically induced only in adipose tissue. We suggest that an important aspect of LXRalpha autoregulation in adipose tissue may be to increase the level of LXRalpha over a threshold level necessary to induce the expression of certain target genes.  相似文献   

14.
Oxysterol nuclear receptors liver X receptor (LXR)alpha and LXRbeta are known to regulate lipid homeostasis in cells exposed to high amounts of cholesterol and/or fatty acids. In order to elucidate the specific and redundant roles of the LXRs in the testis, we explored the reproductive phenotypes of mice deficient of LXRalpha, LXRbeta, and both, of which only the lxralpha;beta-/- mice are infertile by 5 months of age. We demonstrate that LXRalpha-deficient mice had lower levels of testicular testosterone that correlated with a higher apoptotic rate of the germ cells. LXRbeta-deficient mice showed increased lipid accumulation in the Sertoli cells and a lower proliferation rate of the germ cells. In lxralpha;beta-/- mice, fatty acid metabolism was affected through a decrease of srebp1c and increase in scd1 mRNA expression. The retinoid acid signaling pathway was also altered in lxralpha;beta-/- mice, with a higher accumulation of all-trans retinoid receptor alpha, all-trans retinoid receptor beta, and retinoic aldehyde dehydrogenase-2 mRNA. Combination of these alterations might explain the deleterious phenotype of infertility observed only in lxralpha;beta-/- mice, even though lipid homeostasis seemed to be first altered. Wild-type mice treated with a specific LXR agonist showed an increase of testosterone production involving both LXR isoforms. Altogether, these data identify new roles of each LXR, collaborating to maintain both integrity and functions of the testis.  相似文献   

15.
Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPARalpha) and liver X receptors (LXRalpha and LXRbeta) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPARalpha and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPARalpha ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis.  相似文献   

16.
17.
18.
19.
The biological functions of liver X receptors (LXRs) alpha and beta have primarily been linked to pathways involved in fatty acid and cholesterol homeostasis. Here we report a novel role of LXR activation in protecting cells from statin-induced death. When 3T3-L1 preadipocytes were induced to differentiate by standard isobutylmethylxanthine/dexamethasone/insulin treatment in the presence of statins, they failed to differentiate and underwent massive apoptosis. The simultaneous addition of selective LXR agonists prevented the statin-induced apoptosis. By using mouse embryo fibroblasts from wild-type (LXRalpha+/+/LXRbeta+/+), LXRalpha knock-out mice (LXRalpha(-/-)/LXRbeta+/+), LXRbeta knock-out mice (LXRalpha+/-/LXRbeta(-/-)), and LXR double knock-out mice (LXRalpha(-/-)/LXRbeta(-/-)) as well as 3T3-L1 cells transduced with retroviruses expressing either wild-type LXRalpha or a dominant negative version of LXRalpha, we demonstrate that the response to LXR agonists is LXR-dependent. Interestingly, LXR-mediated rescue of statin-induced apoptosis was not related to up-regulation of genes previously shown to be involved in the antiapoptotic action of LXR. Furthermore, forced expression of Bcl-2 did not prevent statin-induced apoptosis; nor did LXR action depend on protein kinase B, whose activation by insulin was impaired in statin-treated cells. Rather, LXR-dependent rescue of statin-induced apoptosis in 3T3-L1 preadipocytes required NF-kappaB activity, since expression of a dominant negative version of IkappaBalpha prevented LXR agonist-dependent rescue of statin-induced apoptosis. Thus, the results presented in this paper provide novel insight into the action of statins on and LXR-dependent inhibition of apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号