首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nishiya I 《Human cell》1998,11(3):109-114
The aim of our cell kinetic studies is to better understand the effects of chemo-endocrine therapy at the cell biological and molecular level. Cancer cell growth is characterized by uncontrolled proliferation, resulting in DNA distribution pattern in which, at any time, more cells are not G1 phase but in S, G2 and M phase of a shortened cycle. In a recent progress, flow cytometry (FCM) has become a powerful tool for the quantitative analysis of cell cycle parameters by measuring nuclear DNA content in large cell population with high speed. With the aid of FCM in earlier work about 60-80% of ovarian cancers were found to contain aneuploid cells. Now, multi-parameter FCM linked to a computer is available to measure fluorescent intensities not only no base total DNA (Propidium iodide) but also A-T (Hoechst 33342) and G-C (Mithramycin) base pairs in solid cancer nuclei. Since cisplatinum (CDDP) is the most important drug in the treatment of ovarian cancer, we have studied the relationship of CDDP cytotoxicity, pertubations cell cycle kinetis and DNA damage in ovarian adenocarcinoma cells in vitro & in vivo. We employed both CDDP sensitive cell line (KFt) and resistant cell line (KFr) derived from human serous cystoadenocarcinoma of the ovary by Kikuchi et al (JNCI 1986). Comparing cell kinetic pertubations of experimental cells demonstrates a decrease in G1 phase cells concomitant increase in S phase cells. The KFr cells had distinctly a shorter S-phase block up to 24 hrs not A-T but G-C preference in a quick response followed repairing of DNA damage to 48 hrs. However, some fractions of CDDP resistant cell population showed a later onset of G2, M phase accumulation. Comparison with the increase in early S phase cells of KFr in detailed analysis suggests only those damaged cells that are not killed immediately may proceed to G1 phase and start into DNA synthesis in S phase. Measurement of labeling index (L. I.) with Bromodeoxyuridine (BrdU) support our interpretation of differences between sensitivity and resistance to anti-cancer drug. Additionally, we discuss a targeting chemotherapy by coupling cytotoxic drugs with estrogen based on increasing DNA damage into apoptosis and interfares with DNA repair process.  相似文献   

2.
ABSTRACT. We developed a method to study the DNA synthetic cycles of Entamoeba histolytica and Entamoeba invadens by flow cytometry (FCM) based on a preparative procedure to reduce both high levels of natural fluorescence and non-specific adsorption of fluorochromes. We modeled G1, S, and G2 phases as a series of overlapping Gaussian curves. Both E. histolytica and E. invadens displayed G1, S, and G2 proportions that are consistent with eukaryotic cell populations in exponential or stationary growth phase. Exponential phase E. histolytica populations contained a hypodiploid subset with a mass of about 20% less than the diploid value which we estimate by FCM to be 24 × 10-14 g DNA/cell. Exponential phase E. invadens populations contained a hypodiploid subset with a mass of about 6% less than the diploid value which we estimate by FCM to be 30 × 10-14 g DNA/cell.  相似文献   

3.
B Kirkhus  O P Clausen 《Cytometry》1990,11(2):253-260
Hairless mice were injected intraperitoneally with bromodeoxyuridine (Brd-Urd). Basal cells were isolated from epidermis, fixed in 70% ethanol, and prepared for bivariate BrdUrd/DNA flow cytometric (FCM) analysis. Optimum detection of incorporated BrdUrd in DNA was obtained by combining pepsin digestion and acid denaturation. The cell loss was reduced to a minimum by using phosphate-buffered saline containing Ca2+ and Mg2+ to neutralize the acid. The percentage of cells in S phase and the average uptake of BrdUrd per labelled cell in eight consecutive windows throughout the S phase were measured after pulse labelling at intervals during a 24 h period. Furthermore, the cell cycle progression of a pulse-labelled cohort of cells was followed up to 96 h after BrdUrd injection. In general the results from both experiments were in good agreement with previous data from 3H-thymidine labelling studies. The percentage of cells in S phase was highest at night and lowest in the afternoon, whereas the average uptake of BrdUrd per labelled cell showed only minor circadian variations. There were no indications that BrdUrd significantly perturbed normal epidermal growth kinetics. A cell cycle time of about 36 h was observed for the labelled cohort. Indications of heterogeneity in traverse through G1 phase were found, and the existence of slowly cycling or temporarily resting cells in G2 phase was confirmed. There was, however, no evidence of a significant population of temporarily resting cells in the S phase. Bivariate DNA/keratin FCM analysis revealed a high purity of basal cells in the suspensions and indicated that the synthesis of the differentiation-keratin K10 was turned on only in G1 phase and after the last division.  相似文献   

4.
Abstract. Cells from the small cell population of viable cells in the large necrotic centre of murine M8013 tumours were investigated with respect to their cell kinetics. Flow cytometry (FCM) of this part of subcutaneously transplanted tumours revealed the presence of tumour cells with G1, S and G2 + M phase DNA-contents. These severely hypoxic cells could have stopped cell cycle progression due to the nutritional deprivation, irrespective of their position within the cell cycle.
Labelling methods, used to disclose the cell kinetics of this cell population, are hampered by the absence of a transport system in these large necrotic areas. Therefore, FCM was used to monitor radiation-induced changes in the cell cycle distribution. From this investigation it was concluded that hypoxic cells in the necrotic centre of the M8013 tumour progress through the cell cycle. As well as a cell population with a cell cycle time (Tc) of approximately 84 hr, a subpopulation with a Tc of approximately 21 hr occurred.  相似文献   

5.
6.
We examined replication of the autonomous parvovirus Aleutian mink disease parvovirus (ADV) in relation to cell cycle progression of permissive Crandell feline kidney (CRFK) cells. Flow cytometric analysis showed that ADV caused a composite, binary pattern of cell cycle arrest. ADV-induced cell cycle arrest occurred exclusively in cells containing de novo-synthesized viral nonstructural (NS) proteins. Production of ADV NS proteins, indicative of ADV replication, was triggered during S-phase traverse. The NS+ cells that were generated during later parts of S phase did not undergo cytokinesis and formed a distinct population, termed population A. Formation of population A was not prevented by VM-26, indicating that these cells were arrested in late S or G2 phase. Cells in population A continued to support high-level ADV DNA replication and production of infectious virus after the normal S phase had ceased. A second, postmitotic, NS+ population (termed population B) arose in G0/G1, downstream of population A. Population B cells were unable to traverse S phase but did exhibit low-level DNA synthesis. Since the nature of this DNA synthesis was not examined, we cannot at present differentiate between G1 and early S arrest in population B. Cells that became NS+ during S phase entered population A, whereas population B cells apparently remained NS- during S phase and expressed high NS levels postmitosis in G0/G1. This suggested that population B resulted from leakage of cells with subthreshold levels of ADV products through the late S/G2 block and, consequently, that the binary pattern of ADV-induced cell cycle arrest may be governed merely by viral replication levels within a single S phase. Flow cytometric analysis of propidium iodide fluorescence and bromodeoxyuridine uptake showed that population A cells sustained significantly higher levels of DNA replication than population B cells during the ADV-induced cell cycle arrest. Therefore, the type of ADV-induced cell cycle arrest was not trivial and could have implications for subsequent viral replication in the target cell.  相似文献   

7.
Cells from the small cell population of viable cells in the large necrotic centre of murine M8013 tumours were investigated with respect to their cell kinetics. Flow cytometry (FCM) of this part of subcutaneously transplanted tumours revealed the presence of tumour cells with G1, S and G2 + M phase DNA-contents. These severely hypoxic cells could have stopped cell cycle progression due to the nutritional deprivation, irrespective of their position within the cell cycle. Labelling methods, used to disclose the cell kinetics of this cell population, are hampered by the absence of a transport system in these large necrotic areas. Therefore, FCM was used to monitor radiation-induced changes in the cell cycle distribution. From this investigation it was concluded that hypoxic cells in the necrotic centre of the M8013 tumour progress through the cell cycle. As well as a cell population with a cell cycle time (Tc) of approximately 84 hr, a subpopulation with a Tc of approximately 21 hr occurred.  相似文献   

8.
DBcAMP reversibly arrests cultivated Cloudman melanoma cells in the late S and G2 phases of the cell cycle. This is supported by the measurement of DNA synthesis by autoradiography and measurement of cellular DNA by two methods--the diphenylamine reaction and microspectrophotometry of Feulgen stained cells. We also present evidence that (1) cell division is prevented if DBcAMP is added as late in the cycle as early S phase. (2) The inhibition of cell division does not appear to be caused by products of tyrosine oxidation. (3) The increase in cell size that occurs in the presence of DBcAMP reflects continued synthesis of protein in the absence of cell division.  相似文献   

9.
BACKGROUND: In a previous work, we demonstrated with flow cytometry (FCM) methods that accumulation of human cyclin B1 in leukemic cell lines begins during the G(1) phase of the cell cycle (Viallard et al. , Exp Cell Res 247:208-219, 1999). In the present study, FCM was used to compare the localization and the kinetic patterns of cyclin B1 expression in Jurkat leukemia cell line and phytohemagglutinin (PHA)-stimulated normal T lymphocytes. METHODS: Cell synchronization was performed in G(1) with sodium n-butyrate, at the G(1)/S transition with thymidine and at mitosis with colchicine. Cells (leukemic cell line Jurkat or PHA-stimulated human T-lymphocytes) were stained for DNA and cyclin B1 and analyzed by FCM. Western blotting was used to confirm certain results. RESULTS: Under asynchronous growing conditions and for both cell populations, cyclin B1 expression was essentially restricted to the G(2)/M transition, reaching its maximal level at mitosis. When the cells were synchronized at the G(1)/S boundary by thymidine or inside the G(1) phase by sodium n-butyrate, Jurkat cells accumulated cyclin B1 in both situations, whereas T lymphocytes expressed cyclin B1 only during the thymidine block. The cyclin B1 fluorescence kinetics of PHA-stimulated T lymphocytes was strictly similar when considering T lymphocytes blocked at the G(1)/S phase transition by thymidine and in exponentially growing conditions. These FCM results were confirmed by Western blotting. The detection of cyclin B1 by Western blot in cells sorted in the G(1) phase of the cell cycle showed that cyclin B1 was present in the G(1) phase in leukemic T cells but not in normal T lymphocytes. Cyclin B1 degradation was effective at mitosis, thus ruling out a defective cyclin B1 proteolysis. CONCLUSIONS: We found that the leukemic T cells behaved quite differently from the untransformed T lymphocytes. Our data support the notion that human cyclin B1 is present in the G(1) phase of the cell cycle in leukemic T cells but not in normal T lymphocytes. Therefore, the restriction point from which cyclin B1 can be detected is different in the two models studied. We hypothesize that after passage through a restriction point differing in T lymphocytes and in leukemic cells, the rate of cyclin B1 synthesis becomes constant in the S and G(2)/M phases and independent from the DNA replication cycle.  相似文献   

10.
Unique Tissue-Specific Cell Cycle in Physcomitrella   总被引:1,自引:0,他引:1  
Abstract: The moss Physcomitrella patens (Hedw.) B.S.G. is a novel tool in plant functional genomics as it has an inimitable high gene targeting efficiency facilitating the establishment of gene/function relationships.
Here we report, based on flow cytrometric (FCM) data, that the basic nuclear DNA content per cell of Physcomitrella is 0.53 pg, equating to a genome size of 1 C = 511 Mbp. Furthermore, we describe a unique tissue-specific cell cycle change in this plant. Young plants consisting of only one cell type (chloronema) displayed one single peak of fluorescence in FCM analyses. As soon as the second cell type (caulonema) developed from chloronema, a second peak of fluorescence at half the intensity of the previous one became detectable, indicating that caulonema cells were predominantly at the G1/S transition, whereas chloronema cells were mainly accumulating at the G2/M transition. This conclusion was validated by further evidence: i) The addition of ammonium tartrate arrested Physcomitrella in the chloronema state and in G2/M. ii) Two different developmental mutants, known to be arrested in the chloronema/caulonema transition, remained in G2/M, regardless of age and treatment. iii) The addition of auxin or cytokinin induced the formation of caulonema, as well as decreasing the amount of cells in G2/M phase. Additionally, plant growth regulators promoted endopolyploidisation.
Thus, cell cycle and cell differentiation are closely linked in Physcomitrella and effects of plant hormones and environmental factors on both processes can be analysed in a straight forward way. We speculate that this unique tissue-specific cell cycle arrest may be the reason for the uniquely high rate of homologous recombination found in the Physcomitrella nuclear DNA.  相似文献   

11.
The nuclear DNA content and the numbers of cells in the S and G2M phases of the cell cycle were determined by flow cytometry (FCM) in fine needle aspirates of 187 thyroid tumors to evaluate the diagnostic value of nuclear DNA content determination in combination with aspiration cytology. DNA aneuploidy was present in 4 of 5 follicular carcinomas, 2 of 3 anaplastic carcinomas, 5 of 15 excised follicular adenomas and 2 of 20 excised adenomatous goiters; all 7 papillary carcinomas and 4 lymphomas were diploid in the aspirate. Aneuploid carcinomas had easily distinguishable S and/or G2M phases, unlike the benign aneuploid tumors. None of the histologically benign tumors or the nonexcised tumors had greater than 6% S-phase cells, and only one benign tumor had greater than 9% G2M-phase cells. In contrast, all lymphomas had greater than 10% S-phase cells and four of seven papillary carcinomas had greater than 9% G2M-phase cells. The use of FCM determination in combination with fine needle aspiration biopsy cytology improved the diagnostic potential of the latter technique.  相似文献   

12.
研究桦木酸对H22荷瘤小鼠生命延长率、肿瘤细胞凋亡及细胞周期的影响。结果表明桦木酸能够明显延长H22荷瘤小鼠生生存时间,其中低、中剂量效果显著(P〈0.05);利用DNA结合性荧光探针直接对细胞DNA染色后FCM分析,桦木酸可能是通过影响H22肿瘤细胞S期而诱导肿瘤细胞凋亡。  相似文献   

13.
Experiments by flow cytometry (FCM) after nuclei isolation have never been done to investigate cyclins. We have conducted different experiments by FCM using whole cells and isolated nuclei to study the immunolocalization and kinetic patterns of cyclin B1 and cyclin E in various leukemic cell lines. During asynchronous growth, all whole cells had a scheduled, cell cycle phase-restricted expression of cyclin B1. By using a washless immunostaining of unfixed nuclei, cyclin B1 was detected in all cell cycle phases, including G1, although to a lesser extent than in G2/M, suggesting that in whole cells the cyclin B1 epitope is masked and accessible only in isolated nuclei. When the cells were synchronized at the G1/S boundary by thymidine or in the G1 phase by sodium n-butyrate, an identical accumulation of cyclin B1 was observed. As for cyclin E, its expression was higher with thymidine treatment than with sodium n-butyrate, particularly in nuclei. The elevated cyclin B1 level in the cells arrested at the G1/S boundary may reflect the increased half-life of this protein stabilized as the result of cyclin E overexpression. However, our FCM data also support the notion that accumulation of human cyclin B1 in leukemic cell lines begins during the G1 phase of the cell cycle, probably in the nucleus. The detection of cyclin B1 by Western blot in cells sorted in the G1 phase of the cell cycle confirms this finding. It is possible, therefore, that tumor transformation or leukemic phenotype may invariably be associated with altered cyclin B1 expression.  相似文献   

14.
We have extended our studies on the cell cycle dependence of thermotolerance to include HeLa cells heated at 45.0 degrees C to compare the results to Chinese hamster ovary (CHO) cells. We found that asynchronous HeLa cells were more resistant to heat than CHO cells but showed a similar development and decay of thermotolerance. Flow cytometry (FCM) was used to study redistributions in the cell cycle after an initial heat dose. Cells heated for 35 min at 45.0 degrees C were delayed in G1 by about 7 h compared to controls, with delays in late S and G2/M phase also. The heat sensitivity varied through the cell cycle; G1 cells were the most resistant to heat, while S-phase cells were uniformly sensitive throughout S phase, and G2 cells were resistant. Thermotolerance could be induced and expressed in early or late S-phase cells, but to a lesser extent than for G1 cells. The results were similar in many respects to CHO cells, but there were significant differences.  相似文献   

15.
研究鸟氨酸脱羧酶抗酶蛋白对人红白血病K562细胞增殖、三氧化二砷( As2O3)诱导凋亡时的影响。方法: 定点突变技术构建缺失frameshift位点的pEGFP-N1-AZ1-mutation重组表达载体。脂质体法转染K562细胞,通过G418筛选获得稳定表达antizyme1的K562pAZ1m细胞系。采用不同浓度的As2O3处理细胞,通过MTT法检测细胞增殖,流式细胞术分析细胞周期及凋亡变化。并通过RT-PCR方法检测antiyme1转染对cyclin D1和survivin基因表达的影响。结果:获得稳定表达antizyme1的K562-AZ1m细胞株后,其增殖能力明显减慢。CyclinD1基因表达降低,细胞主要停滞于G0/G1期。在 As2O3的诱导作用下,细胞凋亡增多,survivin基因表达降低。结论:AZ1基因能够抑制K562细胞增殖,通过对cyclinD1的负调控使细胞周期停滞于G0/G1期。并可能通过下调survivin表达来加强 As2O3对其的诱导凋亡作用  相似文献   

16.
目的:观察环氧合酶-2(COX-2)抑制剂塞来昔布对直肠癌HCA-7细胞株的放射敏感性及探讨其机制。方法:采用MTT法检测塞来昔布作用不同时间对直肠癌HCA-7细胞株增殖的影响,计算出塞来昔布的半数抑制浓度IC50;HCA-7细胞克隆形成实验用于检测塞来昔布对HCA-7细胞的放射敏感性,并绘制存活曲线;流式细胞仪(FCM)测定塞来昔布对HCA-7的细胞周期的影响。结果:塞来昔布对HCA-7细胞株的抑制率随时间的延长而升高,48h的IC50是40.19μmol/L;照射组+药物组的SF2、D0、Dq、SER较单纯照射组均有所下降。塞来昔布使HCA-7细胞发生G2和M期阻滞,并抑制S期的比例。结论:塞来昔布能增加直肠癌HCA-7细胞的放射敏感性。  相似文献   

17.
It has been reported that the response of target cells to steroid hormone (SH) stimulation may depend on their position in the cell cycle. The DNA and RNA contents of malignant cells of the endometrium cultured in vitro were measured using flow cytometry (FCM). We also measured estrogen receptor (ER) and progesterone receptor (PR) levels of cells at different positions in the cell cycle. The G1 and S phases of the cell cycle were investigated using cells synchronized by sodium n-butyrate (G1 block), methotrexate (S block), and excess thymidine (S block). For DNA measurements, the cells were stained with propidium iodide following RNase treatment. For RNA measurements (double-stranded RNA) the cells were treated with DNase. We found that S phase synchronization by methotrexate was 136.2% of control (100%). Using the excess thymidine block and release procedure, the S phase fraction was 185.1% of control. G1 phase synchronization by sodium n-butyrate was 134% of control. The estrogen receptor level in G1 phase synchronized cells increased to 5.94 fmol/micrograms DNA in the cytosol and 12.35 fmol/micrograms DNA in the nuclear fraction. These levels represent a sevenfold total increase over that of the control estrogen receptor level. Cells in S phase showed no significant increase in estrogen receptor levels over control cells. Based on this study, the functional increase of the steroid receptor was most significant in the G1 phase.  相似文献   

18.
The frequency of labeled mitoses (FLM) method for analyzing cell-cycle phases necessitates a determination of cell-cycle interdivision times and the absolute lengths of the cell-cycle phases. The change to flow sorting (FACS) analysis, a simpler, less labor intensive, and more rapid method, eliminated determinations of absolute phase times, yielding only percents of cells exhibiting particular DNA contents. Without an interdivision time value, conversion of these fractions into absolute phase lengths is not possible. This change in methodology has led to an alteration in how the cell cycle is viewed. The FLM method allowed the conclusion that G1-phase variability resulted from constancy of S and G2 phase lengths. In contrast, with FACS analysis, slow growing cells exhibiting a large fraction of cells with a G1-phase amount of DNA appeared to be “arrested in G1 phase”. The loss of absolute phase length determinations has therefore led to the proposals of G1-phase arrest, G1-phase controls, restriction points, and G0 phase. It is suggested that these G1-phase controls and phenomena require a critical reevaluation in the light of an alternative cell-cycle model that does not require or postulate such G1-phase controls.  相似文献   

19.
H Park  R Davis    T S Wang 《Nucleic acids research》1995,23(21):4337-4344
The status of Schizosaccharomyces pombe (fission yeast) DNA polymerase alpha was investigated at different stages of the cell cycle. S.pombe DNA polymerase alpha is a phosphoprotein, with serine being the exclusive phosphoamino acid. By in vivo pulse labeling experiments DNA polymerase alpha was found to be phosphorylated to a 3-fold higher level in late S phase cells compared with cells in the G2 and M phases, but the steady-state level of phosphorylation did not vary significantly during the cell cycle. Tryptic phosphopeptide mapping demonstrated that the phosphorylation sites of DNA polymerase alpha from late S phase cells were not the same as that from G2/M phase cells. DNA polymerase alpha partially purified from G1/S cells had a different mobility in native gels from that from G2/M phase cells. The partially purified polymerase alpha from G1/S phase cells had a higher affinity for single-stranded DNA than that from G2/M phase cells. Despite the apparent differences in cell cycle-dependent phosphorylation, mobility in native gels and affinity for DNA, the in vitro enzymatic activity of the partially purified DNA polymerase alpha did not appear to vary during the cell cycle. The possible biological significance of these cell cycle-dependent characteristics of DNA polymerase alpha is discussed.  相似文献   

20.
Flow cytometry (FCM) permits instantaneous determination of the percentages of cells in various phases of cell cycle using BrdU-PI double staining method, and allowing rapid evaluation of the effects of irradiation and anti-cancer drugs (ACNU, ADR, BLM) on the cell kinetics. In this study, the growth inhibition and changes in the cell kinetics after irradiation and chemotherapy were examined according to the growth curve analysis and BrdU-PI method to evaluate the usefulness of BrdU-PI method for assessment of the effect of the treatments. By the conventional method based on the DNA histogram, accurate determination of S cell fraction was difficult due to overlapping of the DNA contents of G1 cells and early S cells and those of late S cells and G2 cells. BrdU-PI double staining allowed direct differentiation of G1, S, and G2 + M cells, especially between G1-S and S-G2 + M cells. The analysis of cell kinetics using BrdU is advantageous in comparison to the conventional autoradiographic methods because it allows more rapid assay with very high sensitivity. By the present BrdU method, rapid transition to the G1-S phase was observed within 4 hours after exposure to radiation and anti-cancer drugs. This initial G1 arrest induced by irradiation was confirmed for the first time by the present BrdU-PI double staining. The present method is considered to be indispensable for evaluation of the percentage of S cells in the tumor tissue and analysis of cell kinetics after irradiation and chemotherapy against cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号