首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previously reported 1,4-butanediol diglycidyl ether (BDE) crosslinked PEI (branched polyethylenimine, 25 k) nanoparticles (A. Swami, R. Kurupati, A. Pathak, Y. Singh, P. Kumar and K. C. Gupta, A unique and highly efficient non-viral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles, Biochem. Biophys. Res. Commun., 2007, 362, 835-841) (PN NPs) were reacted with varying proportions of a novel linker, 2-(N-1-tritylimidazol-4-yl)-N-(6-glycidyloxyhexyl)-acetamide (IGA linker, 3), to yield PN-g-imidazolyl nanoparticles (PNIm) with improved transfection efficiency. Here, the IGA linker (3) reacted through an epoxy ring to partially convert the residual 1° and 2° amines present in PN NPs to 2° and 3°, respectively, without altering the total number of amines and additionally incorporating the delocalized positive charge of the imidazolyl moiety. The resulting particles were characterized for their size, zeta potential and DNA complexing ability. PNIm/DNA nanoplexes, in the size range of 120-400 nm, were evaluated for transfection efficiency in HeLa, HEK293 and CHO cell lines, which was found to be ~11, ~2-3 and ~2-17 folds higher than PEI, PN-2 (the best working sample of the PN series) (A. Swami, R. Kurupati, A. Pathak, Y. Singh, P. Kumar and K. C. Gupta, A unique and highly efficient non-viral DNA/siRNA delivery system based on PEI-bisepoxide nanoparticles, Biochem. Biophys. Res. Commun., 2007, 362, 835-841) and commercial transfection reagents tested in this study, respectively. Also, flow cytometric analysis showed ~78% (ca.~43% in PN-2) cells transfected with the PNIm 10(6)/DNA complex (the best working sample of the PNIm series) in HEK293 cells. Transfection of GFP specific siRNA in HEK293 cells suppressed the gene expression by ~90% (ca.~70% in PN-2). All the cell lines treated with PNIm/DNA nanoplexes showed >90% viability. In vivo gene expression of luciferase enzyme in Balb/c mice showed highest expression in spleen after seven days.  相似文献   

2.
Endosomal release is an efficiency-limiting step for many nonviral gene delivery vehicles. In this work, nonviral gene delivery vehicles were modified with a membrane-lytic peptide taken from the endodomain of HIV gp41. Peptide was covalently linked to polyethylenimine (PEI) and the peptide-modified polymer was complexed with DNA. The resulting nanoparticles were shown to have similar physicochemical properties as complexes formed with unmodified PEI. The gp41-derived peptide demonstrated significant lytic activity both as free peptide and when conjugated to PEI. Significant increases in transgene expression were achieved in HeLa cells when compared to unmodified polyplexes at low polymer to DNA ratios. Additionally, peptide-modified polyplexes mediated significantly enhanced siRNA delivery compared to unmodified polyplexes. Despite increases in transgene expression and siRNA knockdown, there was no increase in internalization or binding of modified carriers as determined by flow cytometry. The hypothesis that the gp41-derived peptide increases the endosomal escape of vehicles is supported by confocal microscopy imaging of DNA distributions in transfected cells. This work demonstrates the use of a lytic peptide for improved trafficking of nonviral gene delivery vehicles.  相似文献   

3.
BACKGROUND: Efficient in vivo vectors are needed to exploit the enormous potential of RNA interference (RNAi). Such methods require optimisation for specific delivery routes, tissues and usages. We tested the capacity of different non-viral vectors and formulation methods for inhibition of exogenous (luciferase) gene expression when used to introduce small interfering RNA (siRNA) into the mouse brain in vivo. METHODS: Polyethylenimine (PEI)-based polyplexes and JetSI (a mixture of cationic lipids)-based lipoplexes were used to vectorise plasmid DNA encoding the firefly Photinus pyralis luciferase gene and picomolar amounts of siRNA directed against this gene. Two controls were used, DNA encoding an unrelated luciferase from Renilla reniformis and a mutated siRNA sequence. RESULTS: First, we found that linear PEI, although efficient for delivering nucleic acids to cells, did not permit development of siRNA activity within the dose range tested (<0.5 pmol). Second, various combinations of cationic lipids were tried and the best formulation was found to be a combination of JetSI with the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE). Efficient inhibition of target, firefly luciferase was obtained with exceedingly low amounts of siRNA: 78 +/- 6% inhibition at 24 h post-transfection with 0.2 pmol siRNA. This inhibition was dose-dependent and specific. No effect was seen on the control gene, co-transfected Renilla luciferase, and the control mutated siRNA sequence had no effect on the targeted firefly luciferase. CONCLUSIONS: We have optimised an efficient cationic lipoplex method for delivery of siRNA into the newborn mouse brain. Specific inhibition of exogenous target gene expression is obtained with picomolar amounts of siRNA.  相似文献   

4.
Small interfering RNA (siRNA) molecules have great potential for developing into a future therapy for breast cancer. To overcome the issues related to rapid degradation and low transfection of naked siRNA, polyethylenimine (PEI)-coated human serum albumin (HSA) nanoparticles have been characterized and studied here for efficient siRNA delivery to the MCF-7 breast cancer cell line. The optimized nanoparticles were ~90 nm in size, carrying a surface charge of +26 mV and a polydispersity index (PDI) less than 0.25. The shape and morphology of the particles was studied using electron microscopy. A cytotoxicity assessment of the nanoparticles showed no correlation of cytotoxicity with HSA concentration, while using high molecular weight PEI (MW of 70 against 25 kDa) showed higher cytotoxicity. The optimal transfection achieved of fluorescin-tagged siRNA loaded into PEI-coated HSA nanoparticles was 61.66 ± 6.8%, prepared with 6.25 μg of PEI (25 kDa) added per mg of HSA and 20 mg/ml HSA, indicating that this nonviral vector may serve as a promising gene delivery system.  相似文献   

5.
L Qi  L Wu  S Zheng  Y Wang  H Fu  D Cui 《Biomacromolecules》2012,13(9):2723-2730
RNA interference is one of the most promising technologies for cancer therapeutics, while the development of a safe and effective small interfering RNA (siRNA) delivery system is still challenging. Here, amphipol polymer and protamine peptide were employed to modify magnetic nanoparticles to form cell-penetrating magnetic nanoparticles (CPMNs). The unique CPMN could efficiently deliver the eGFP siRNA intracellularly and silence the eGFP expression in cancer cells, which was verified by fluorescent imaging of cancer cells. Compared with lipofectamine and polyethyleneimine (PEI), CPMNs showed superior silencing efficiency and biocompatibility with minimum siRNA concentration as 5 nm in serum-containing medium. CPMN was proved to be an efficient siRNA delivery system, which will have great potential in applications as a universal transmembrane carrier for intracellular gene delivery and simultaneous MRI imaging.  相似文献   

6.
A new polyethylenimine (PEI)-derived biodegradable polymer was synthesized as a nonviral gene carrier. Branches of PEI were ketalized, and capabilities of nucleic acid condensation and delivery efficiency of the modified polymers were compared with ones of unketalized PEI. Ketalized PEI was able to efficiently compact both plasmid DNA and siRNA into nucleic acids/ketalized PEI polyplexes with a range of 80-200 nm in diameter. Nucleic acids were efficiently dissociated from the polyplexes made of ketalized PEI upon hydrolysis. In vitro study also demonstrated that ketalization enhanced transfection efficiency of the polyplexes while reducing cytotoxicity, even at high N/ P ratios. Interestingly, transfection efficiency was found to be inversely proportional to molecular weights of ketalized PEI, while RNA interference was observed in the opposite way. This study implies that selective delivery of plasmid DNA and siRNA to the nucleus and the cytoplasm can be achieved by tailoring the structures of polymeric gene carriers.  相似文献   

7.
Polymer carriers like PEI which proved their efficiency in DNA delivery were found to be far less effective for the applications with siRNA. In the current study, we generated a number of nontoxic derivates of branched PEI through modification of amines by ethyl acrylate, acetylation of primary amines, or introduction of negatively charged propionic acid or succinic acid groups to the polymer structure. The resulting products showed high efficiency in siRNA-mediated knockdown of target gene. In particular, succinylation of branched PEI resulted in up to 10-fold lower polymer toxicity in comparison to unmodified PEI. Formulations of siRNA with succinylated PEI were able to induce remarkable knockdown (80% relative to untreated cells) of target luciferase gene at the lowest tested siRNA concentration of 50 nM in Neuro2ALuc cells. The polyplex stability assay revealed that the efficiency of formulations which are stable in physiological saline is independent of the affinity of siRNA to the polymer chain. The improved properties of modified PEI as siRNA carrier are largely a consequence of the lower polymer toxicity. In order to achieve significant knockdown of target gene, the PEI-based polymer has to be applied at higher concentrations, required most probably for sufficient accumulation and proton sponge effects in endosomes. Unmodified PEI is highly toxic at such polymer concentrations. In contrast, the far less toxic modified analogues can be applied in concentrations required for the knockdown of target genes without side effects.  相似文献   

8.
Li S  Wang Y  Zhang J  Yang WH  Dai ZH  Zhu W  Yu XQ 《Molecular bioSystems》2011,7(4):1254-1262
Polyethylenimine (PEI, especially with M(w) of 25,000) has been known as an efficient gene carrier and a gold standard of gene transfection due to its high transfection efficiency (TE). However, high concomitant cytotoxicity limited the application of PEI. In this report, several cationic polymers derived from low molecular weight (LMW) PEI (M(w) 600) linked with diglycidyl adipate (DA-PEI) or its analogs (diglycidyl succinate, DS-PEI and diglycidyl oxalate, DO-PEI; D-PEIs for all 3 polymers) were prepared and characterized. GPC gave M(w)s of DA-PEI, DS-PEI and DO-PEI as 6861, 16,015 and 35,281, respectively. Moreover, degradation of the ester-containing DS-PEI was also confirmed by GPC. In addition, hydroxyls in these polymers could improve their water solubility. These polymers exhibited good ability to condense plasmid DNA into nanoparticles with the size of 120-250 nm. ζ-potentials of the polyplexes were found to be around +10-20 mV under weight ratios (polymer/DNA) from 0.5 to 32. Agarose gel retardation showed that DNA could be released from the polyplexes after being pre-incubated for 30 h. In vitro experiments were carried out and it was found that DS-PEI showed about 5 times of TE compared to that of the PEI/DNA polyplex under a weight ratio of 1 in A549 cells. Meanwhile, the cytotoxicity of D-PEIs assayed by MTT is lower than that of 25 kDa PEI in HEK293 cells. These results suggested that this series of PEI derivatives would be promising non-viral biodegradable vectors for gene delivery.  相似文献   

9.
Potent sequence selective gene inhibition by siRNA ‘targeted’ therapeutics promises the ultimate level of specificity, but siRNA therapeutics is hindered by poor intracellular uptake, limited blood stability and non-specific immune stimulation. To address these problems, ligand-targeted, sterically stabilized nanoparticles have been adapted for siRNA. Self-assembling nanoparticles with siRNA were constructed with polyethyleneimine (PEI) that is PEGylated with an Arg-Gly-Asp (RGD) peptide ligand attached at the distal end of the polyethylene glycol (PEG), as a means to target tumor neovasculature expressing integrins and used to deliver siRNA inhibiting vascular endothelial growth factor receptor-2 (VEGF R2) expression and thereby tumor angiogenesis. Cell delivery and activity of PEGylated PEI was found to be siRNA sequence specific and depend on the presence of peptide ligand and could be competed by free peptide. Intravenous administration into tumor-bearing mice gave selective tumor uptake, siRNA sequence-specific inhibition of protein expression within the tumor and inhibition of both tumor angiogenesis and growth rate. The results suggest achievement of two levels of targeting: tumor tissue selective delivery via the nanoparticle ligand and gene pathway selectivity via the siRNA oligonucleotide. This opens the door for better targeted therapeutics with both tissue and gene selectivity, also to improve targeted therapies with less than ideal therapeutic targets.  相似文献   

10.
BACKGROUND: Non-viral methods of gene delivery, especially using polyethylenimine (PEI), have been widely used in gene therapy or DNA vaccination. However, the PEI system has its own drawbacks, which limits its applications. METHODS: We have developed a novel non-viral delivery system based on PEI coated on the surface of bacterial magnetic nanoparticles (BMPs). The ability of BMPs-PEI complexes to bind DNA was determined by retardation of plasmid DNA in agarose gel electrophoresis. The transfection efficiency of BMPs-PEI/DNA complexes into eukaryotic cells was determined by flow cytometric analysis. The MTT assay was invited to investigate the cytotoxicity of BMPs-PEI/DNA complexes. The expression efficiency in vivo of BMPs-PEI bound to the plasmid pCMVbeta encoding beta-galactosidase was evaluated intramuscularly inoculated into mice. The immune responses of in vivo delivery of BMPs-PEI bound plasmid pcD-VP1 were determined by MTT assay for T cell proliferation and ELISA for detecting total IgG antibodies. RESULTS: BMPs-PEI complexes could bind DNA and provide protection from DNase degradation. The transfection efficiency of BMPs-PEI/DNA complexes was higher than that in PEI/DNA complexes. Interestingly, in contrast to PEI, the BMPs-PEI complex was less cytotoxic to cells in vitro. We further demonstrated that the BMPs-PEI system can deliver an exogenous gene to animals and allow it to be expressed in vivo. Such expression resulted in higher levels of humoral and cellular immune responses against the target antigen compared to controls. CONCLUSIONS: We have developed a novel BMPs-PEI gene delivery system with a high transfection efficiency and low toxicity, which presents an attractive strategy for gene therapy and DNA vaccination.  相似文献   

11.
Polyplexes between siRNA and poly(ethylene imine) (PEI) derivatives are promising nonviral carriers for siRNA. The polyplex stability is of critical importance for efficient siRNA delivery to the cytoplasm. Here, we investigate the effect of PEGylation at a constant ratio ( approximately 50%) on the biophysical properties of the polyplexes. Particle size, zeta potential, and stability against heparin as well as RNase digestion and reporter gene knockdown under in vitro conditions of different siRNA polyplexes were characterized. Stability and size of siRNA polyplexes were clearly influenced by PEI-PEG structure, and high degrees of substitution such as PEI(25k)-g-PEG(550)(30) resulted in large (300-400 nm), diffuse complexes (AFM) which showed condensation behavior only at high N/P ratios. All other polyplexes and the PEI control showed similar sizes (150 nm) and compact structures in AFM, with complete condensation reached at N/P ratio of 3. Stability of siRNA polyplexes against heparin displacement and RNase digestion could be modified by PEGylation. Protection against RNase digestion was highest for PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1), while siRNA/PEI provided insufficient protection. In knockdown experiments using NIH/3T3 fibroblasts stably expressing beta-galactosidase, it was shown that PEG chain length had a significant influence on biological activity of siRNA. Polyplexes with siRNA containing PEI(25k)-g-PEG(5k)(4) and PEI(25k)-g-PEG(20k)(1) yielded similar efficiencies of ca. 70% knockdown as lipofectamine controls. Confocal microscopy demonstrated enhanced cellular uptake of siRNA into cytosol by polyplexes formation with PEI copolymers. In conclusion, both the chain length and graft density of PEG were found to strongly influence siRNA condensation and stability and hence affect the knockdown efficiency of PEI-PEG/siRNA polyplexes.  相似文献   

12.
Brain capillary endothelial cells (BCECs) have been considered as one of the primary targets for cerebral gene therapy. However, the cells, well-known for their poor function of endocytosis, are difficult to be transfected by general non-viral vectors. The aim of this study was to enhance the efficiency of transfection and expression in BCECs of DNA/polymer nanoparticles with the modification of membrane-penetrating peptide, Antennapedia peptide (Antp) polyethylenimine (PEI) and polyamidoamine (PAMAM) were chosen to prepare Antp-modified DNA-loaded nanoparticles with a complex coacervation technique. After a 20-min transfection, the efficiency, in terms of transfection and expression, of DNA/PEI NP or DNA/PAMAM NP was enhanced significantly with the modification of Antp. After a 3-h transfection of DNA/Antp/PEI NP, there was no difference in cellular uptake but an enhancement in gene expression, compared to DNA/PEI NP alone. However, both the transfection and expression efficiency of DNA/PAMAM NP were enhanced using Antp. These observations suggest that Antp can increase the membrane-penetrating ability of DNA-loaded nanoparticles, which can be employed as novel non-viral gene vectors.  相似文献   

13.
Nonviral gene delivery technologies have been developed using layer-by-layer self-assembly of nanomaterials held together by electrostatic interactions in order to provide nanoparticulate materials that protect and deliver DNA to cells. Here we report a new DNA delivery technology based on the in situ layer-by-layer synthesis of DNA nanoparticles caged within hollow yeast cell wall particles (YCWP). YCWP provide protection and facilitate oral and systemic receptor-targeted delivery of DNA payloads to phagocytic cells. The nanoparticles inside YCWP consist of a core of tRNA/polyethylenimine (PEI) followed by a DNA layer that is finally coated with a protective outer layer of PEI. Using fluorescein and rhodamine labeling of tRNA, PEI, and DNA, the layer-by-layer formation of the nanoparticles was visualized by fluorescent microscopy and quantitated by fluorescence spectroscopy and flow cytometry. Optimal conditions (tRNA:YCWP, PEI:YCWP ratios and DNA load levels) to synthesize YCWP encapsulated nanoparticles were determined from these results. The high in vitro transfection efficiency of this encapsulated DNA delivery technology was demonstrated by the transfection of NIH3T3-D1 cells with YCWP-tRNA/PEI/gWizGFP/PEI formulations containing low amounts of the plasmid gWizGFP per particle to maximally express green fluorescent protein (GFP).  相似文献   

14.

Background

Epithelial cell adhesion molecule (EpCAM) is overexpressed in solid tumors and regarded as a putative cancer stem cell marker. Here, we report that employing EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) dual approach, for the targeted delivery of siRNA to EpCAM positive cancer cells, efficiently inhibits cancer cell proliferation.

Results

Targeted delivery of siRNA using polyethyleneimine is one of the efficient methods for gene delivery, and thus, we developed a novel aptamer-PEI-siRNA nanocomplex for EpCAM targeting. PEI nanocomplex synthesized with EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) showed 198 nm diameter sized particles by dynamic light scattering, spherical shaped particles, of 151 ± 11 nm size by TEM. The surface charge of the nanoparticles was −30.0 mV using zeta potential measurements. Gel retardation assay confirmed the PEI-EpApt-SiEp nanoparticles formation. The difference in size observed by DLS and TEM could be due to coating of aptamer and siRNA on PEI nanocore. Flow cytometry analysis revealed that PEI-EpApt-SiEp has superior binding to cancer cells compared to EpApt or scramble aptamer (ScrApt) or PEI-ScrApt-SiEp. PEI-EpApt-SiEp downregulated EpCAM and inhibited selectively the cell proliferation of MCF-7 and WERI-Rb1 cells.

Conclusions

The PEI nanocomplex fabricated with EpApt and siEp was able to target EpCAM tumor cells, deliver the siRNA and silence the target gene. This nanocomplex exhibited decreased cell proliferation than the scrambled aptamer loaded nanocomplex in the EpCAM expressing cancer cells and may have potential for EpCAM targeting in vivo.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0108-9) contains supplementary material, which is available to authorized users.  相似文献   

15.
Lymphangiogenesis is implicated in lymphatic metastasis of tumor cells. Recently, growing evidences show that endothelial progenitor cells (EPCs) are involved in lymphangiogenesis. This study has investigated effects of VEGF-C/VEGFR-3 (vascular endothelial growth factor receptor-3) signaling pathway on EPC differentiation and effectiveness of inhibiting lymphatic formation of EPCs with VEGFR-3 siRNA delivered in PEI (polyethylenimine)-alginate nanoparticles. CD34+VEGFR-3+ EPCs were sorted from mononuclear cells of human cord blood. Under induction with VEGF-C, the cells differentiated toward lymphatic endothelial cells. The nanoparticles were formulated with 25 kDa branched PEI and alginate. The size and surface charge of PEI-alginate nanoparticles loading VEGFR-3 siRNA (N/P = 16) are 139.1 nm and 7.56 mV respectively. VEGFR-3 siRNA specifically inhibited expression of VEGFR-3 mRNA in the cells. After treatment with PEI-alginate/siRNA nanocomplexes, EPCs could not differentiate into lymphatic endothelial cells, and proliferation, migration and lymphatic formation of EPC-derived cells were suppressed significantly. These results demonstrate that VEGFR-3 signaling plays an important role in differentiation of CD34+VEGFR-3+ EPCs. VEGFR-3 siRNA delivered with PEI-alginate nanoparticles can effectively inhibit differentiation and lymphangiogenesis of EPCs. Inhibiting VEGFR-3 signaling with siRNA/nanocomplexes would be a potential therapy for suppression of tumor lymphangiogenesis and lymphatic metastasis.  相似文献   

16.
Jiang G  Park K  Kim J  Kim KS  Oh EJ  Kang H  Han SE  Oh YK  Park TG  Kwang Hahn S 《Biopolymers》2008,89(7):635-642
A novel target specific small interfering RNA (siRNA) delivery system was successfully developed using polyethyleneimine (PEI)-hyaluronic acid (HA) conjugate. Anti-PGL3-Luc siRNA was used as a model system suppressing the PGL3-Luc gene expression. The siRNA/PEI-HA complex with an average size of ca. 21 nm appeared to be formed by electrostatic interaction between the negatively charged siRNA and the positively charged PEI of PEI-HA conjugate. The cytotoxicity of siRNA/PEI-HA complex to B16F1 cells was lower than that of siRNA/PEI complex according to the MTT assay. When B16F1 and HEK-293 cells were treated with fluorescein isothiocyanate (FITC) labeled siRNA/PEI-HA complex, B16F1 cells, with a lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), showed higher green fluorescent intensity than HEK-293 cells because of the HA receptor mediated endocytosis of the complex. Accordingly, the PGL3-Luc gene silencing of anti-PGL3-Luc siRNA/PEI-HA complex was more efficient in B16F1 cells than in HEK-293 cells. In addition, the inhibited PGL3-Luc gene silencing effect in the presence of free HA in the transfection medium revealed that siRNA/HA-PEI complex was selectively taken up to B16F1 cells via HA receptor mediated endocytosis. All these results demonstrated that the intracellular delivery of anti-PGL3-Luc siRNA/PEI-HA complex could be facilitated by the HA receptor mediated endocytosis.  相似文献   

17.
In this study the physicochemical and transfection properties of cationic hydroxyethylcellulose/plasmid DNA (pDNA) nanoparticles were investigated and compared with the properties of DNA nanoparticles based on polyethylene imine (PEI), which is widely investigated as a gene carrier. The two types of cationic hydroxyethylcelluloses studied, polyquaternium-4 (PQ-4) and polyquaternium-10 (PQ-10), are already commonly used in cosmetic and topical drug delivery devices. Both PQ-4 and PQ-10 spontaneously interact with pDNA with the formation of nanoparticles approximately 200 nm in size. Gel electrophoresis and fluorescence dequenching experiments indicated that the interactions between pDNA and the cationic celluloses were stronger than those between pDNA and PEI. The cationic cellulose/pDNA nanoparticles transfected cells to a much lesser extent than the PEI-based pDNA nanoparticles. The low transfection property of the PQ-4/pDNA nanoparticles was attributed to their neutrally charged surface, which does not allow an optimal binding of PQ-4/pDNA nanoparticles to cellular membranes. Although the PQ-10/pDNA nanoparticles were positively charged and thus expected to be taken up by cells, they were also much less efficient in transfecting cells than were PEI/pDNA nanoparticles. Agents known to enhance the endosomal escape were not able to improve the transfection properties of PQ-10/pDNA nanoparticles, indicating that a poor endosomal escape is, most likely, not the major reason for the low transfection activity of PQ-10/pDNA nanoparticles. We hypothesized that the strong binding of pDNA to PQ-10 prohibits the release of pDNA from PQ-10 once the PQ-10/pDNA nanoparticles arrive in the cytosol of the cells. Tailoring the nature and extent of the cationic side chains on this type of cationic hydroxyethylcellulose may be promising to further enhance their DNA delivery properties.  相似文献   

18.
Recently, small interfering RNA (siRNA)-based therapeutics have been used to treat diseases. Efficient and stable siRNA delivery into disease cells is important in the use of this agent for treatment. In the present study, pullulan was introduced into polyethylenimine (PEI) for liver targeting. PEI/siRNA or pullulan-containing PEI/siRNA complexes were delivered into mice through the tail vein either by a hydrodynamics- or non-hydrodynamics-based injection. The incidence of mortality was found to increase with an increase in the nitrogen/phosphorus (N/P) ratio of PEI/siRNA complexes. Moreover, the hydrodynamics-based injection increased mice mortality. Introduction of pullulan into PEI dramatically reduced mouse death after systemic injection. After systemic injection, the PEI/fluorescein-labeled siRNA complex increased the level of fluorescence in the lung and the PEI-pullulan/siRNA complex led to an increased fluorescence level in the liver. These results suggest that the PEI-pullulan polymer may be a useful, low toxic means for efficient delivery of siRNA into the liver.  相似文献   

19.
Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this study, we report an enhancement of the transfection efficiency of plasmid DNA, via the use of positively charged colloidal gold nanoparticles (PGN). Plasmid DNA encoding for murine interleukin-2 (pVAXmIL-2) was complexed with PGN at a variety of ratios. The delivery of pVAXmIL-2 into C2C12 cells was dependent on the complexation ratios between PGN and the plasmid DNA, presented the highest delivery at a ratio of 2400:1. After complexation with DNA, PGN showed significantly higher cellular delivery and transfection efficiency than did the polyethylenimines (PEI) of different molecular weights, such as PEI25K (m.w. 25 kd) and PEI2K (m.w. 2 kd). PGN resulted in a cellular delivery of pVAXmIL-2 6.3-fold higher than was seen with PEI25K. The PGN/DNA complex resulted in 3.2- and 2.1-fold higher murine IL-2 protein expression than was seen in association with the PEI25K/DNA and PEI2K/DNA complexes, respectively. Following intramuscular administration, PGN/DNA complexes showed more than 4 orders of magnitude higher expression levels as compared to naked DNA. Moreover, the PGN/DNA complexes showed higher cell viability than other cationic nonviral vectors. Collectively, the results of this study suggest that the PGN/DNA complexes may harbor the potential for development into efficient and safe gene delivery vehicles.  相似文献   

20.
The development of safe and efficient gene carriers is the key to the clinical success of gene therapy. The present study was designed to develop and evaluate the chitosan-graft-polyethylenimine (CP)/DNA nanoparticles as novel non-viral gene vectors for gene therapy of osteoarthritis. The CP/DNA nanoparticles were produced through a complex coacervation of the cationic polymers with pEGFP after grafting chitosan (CS) with a low molecular weight (Mw) PEI (Mw = 1.8 kDa). Particle size and zeta potential were related to the weight ratio of CP:DNA, where decreases in nanoparticle size and increases in surface charge were observed as CP content increased. The buffering capacity of CP was significantly greater than that of CS. The transfection efficiency of CP/DNA nanoparticles was similar with that of the Lipofectamine™ 2000, and significantly higher than that of CS/DNA and PEI (25 kDa)/DNA nanoparticles. The transfection efficiency of the CP/DNA nanoparticles was dependent on the weight ratio of CP:DNA (w/w). The average cell viability after the treatment with CP/DNA nanoparticles was over 90% in both chondrocytes and synoviocytes, which was much higher than that of PEI (25 kDa)/DNA nanoparticles. The CP copolymers efficiently carried the pDNA inside chondrocytes and synoviocytes, and the pDNA was detected entering into nucleus. These results suggest that CP/DNA nanoparticles with improved transfection efficiency and low cytotoxicity might be a safe and efficient non-viral vector for gene delivery to both chondrocytes and synoviocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号