首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   41篇
  2023年   13篇
  2022年   12篇
  2021年   28篇
  2020年   22篇
  2019年   19篇
  2018年   23篇
  2017年   30篇
  2016年   35篇
  2015年   46篇
  2014年   34篇
  2013年   56篇
  2012年   63篇
  2011年   56篇
  2010年   35篇
  2009年   23篇
  2008年   32篇
  2007年   22篇
  2006年   26篇
  2005年   23篇
  2004年   27篇
  2003年   3篇
  2002年   18篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   4篇
  1994年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
排序方式: 共有670条查询结果,搜索用时 46 毫秒
1.
In order to discriminate between the ionic and osmotic components of salt stress, sugarcane (Saccharum officinarum L. cv. Co 86032) calli were cultured on media containing NaCl or polyethylene glycol (PEG) 8000 that exerted the same osmotic pressure (−0.7 MPa). PEG stress exposure for 15 days led to significant growth reduction and loss in water content than salt stressed and control tissues. Osmotic adjustment (OA) was observed in callus tissues grown on salt, but was not evident in callus grown on PEG. Oxidative damage to membranes, estimated in terms of accumulation of thiobarbituric acid reactive substances-TBARS and electrolytic leakage was significantly higher in both the stressed calli than the control however, the extent of damage was more in the PEG stressed calli. The stressed callus tissues showed inhibition of ascorbate peroxidase activity, while catalase activity was increased. These results indicate sensitivity of cells to PEG-mediated stress than salt stress and differences in their OA to these two stress conditions. The sensitivity to the osmotic stress indicate that expression of the stress tolerance response requires the coordinated action of different tissues in a plant and hence was not expressed at the cellular level.  相似文献   
2.
Summary Low molecular weight iron-binding compounds are produced by the brown-rot fungus Gloeophyllum trabeum. These chelators may function in scavenging transition metals for fungal metabolism and extracellular enzyme production. Because of the low molecular mass of the chelate-metal complex (below 1000 Da), and the oxidizing potential of the bound transition metals, certain chelating compounds could also play a role in the early stages of cellulose depolymerization by brown-rot fungi. High-affinity iron-binding compounds were isolated and partially purified from both liquid cultures of the brown-rot Gloeophyllum trabeum and from infected wood. Chelating compounds purified by thin-layer chromatography were used to prepare specific antibodies. These antibodies were shown to detect the chelator in infected wood and liquid fungal cultures by enzyme-linked immunosorbent assay and could be used in immunotransmission electron microscopy to visualize the high-affinity iron-binding compounds in situ. Elucidating the physiological roles of fungal chelate-metal complexes and determining their function in lignocellulose depolymerization will help us to better understand the mechanism of wood biodegradation.Publication no. 1549 Maine Agricultural Experiment Station Offprint requests to: J. Jellison  相似文献   
3.
Summary Mass cultivation of Spirulina for commercial application suffers from poor productivity when measured against laboratory results or theoretical projections. Wider applications of algal products require that this gap be reduced. Addition of eucalyptus kraft black liquor at a maximum of 0.1% to Spirulina cultures enhanced biomass productivity by at least 40%. The factors enhancing Spirulina biomass productivity were insoluble at low pH, of low molecular mass and stable to high temperature. Single addition of kraft black liquor in outdoor continuous cultures afforded sustained enhancement in biomass productivity for at least eight weeks.  相似文献   
4.
Development of new energetic salts is the key factor in replacing low performance compounds in conventional formulations of high explosives as well as propellants. Ten salts based on the nitroformate anion and various nitrogen-rich cations were designed and their geometric optimizations carried out using the density functional method. With reasonable oxygen balance (from ?36 % to 0 %), heats of formation (47–624 kJ mol?1) and high densities (1.81–1.89 g cm?3), the detonation velocity (D) and pressure (P) values of salts were calculated as 8.62–9.36 km s?1 and 33.10–40.01 GPa, respectively. Lastly, the nitroformate salts studied in this work are of prospective interest as high performance explosives.
Graphical Abstract Formation of nitroformate salt from nitroformate anion and a nitrogen-rich cation
  相似文献   
5.
Calcium ion (Ca2+) is a ubiquitous second messenger that transmits various internal and external signals including stresses and, therefore, is important for plants’ response process. Calcineurin B-like proteins (CBLs) are one of the plant calcium sensors, which sense and convey the changes in cytosolic Ca2+-concentration for response process. A search in four leguminous plant (soybean, Medicago truncatula, common bean and chickpea) genomes identified 9 to 15 genes in each species that encode CBL proteins. Sequence analyses of CBL peptides and coding sequences (CDS) suggested that there are nine original CBL genes in these legumes and some of them were multiplied during whole genome or local gene duplication. Coding sequences of chickpea CBL genes (CaCBL) were cloned from their cDNAs and sequenced, and their annotations in the genome assemblies were corrected accordingly. Analyses of protein sequences and gene structures of CBL family in plant kingdom indicated its diverse origin but showed a remarkable conservation in overall protein structure with appearance of complex gene structure in the course of evolution. Expression of CaCBL genes in different tissues and in response to different stress and hormone treatment were studied. Most of the CaCBL genes exhibited high expression in flowers. Expression profile of CaCBL genes in response to different abiotic stresses and hormones related to development and stresses (ABA, auxin, cytokinin, SA and JA) at different time intervals suggests their diverse roles in development and plant defence in addition to abiotic stress tolerance. These data not only contribute to a better understanding of the complex regulation of chickpea CBL gene family, but also provide valuable information for further research in chickpea functional genomics.  相似文献   
6.
Adaptation and survival of Trypanosoma brucei requires editing of mitochondrial mRNA by uridylate (U) insertion and deletion. Hundreds of small guide RNAs (gRNAs) direct the mRNA editing at over 3,000 sites. RNA editing is controlled during the life cycle but the regulation of substrate and stage specificity remains unknown. Editing progresses in the 3’ to 5’ direction along the pre-mRNA in blocks, each targeted by a unique gRNA. A critical editing factor is the mitochondrial RNA binding complex 1 (MRB1) that binds gRNA and transiently interacts with the catalytic RNA editing core complex (RECC). MRB1 is a large and dynamic complex that appears to be comprised of distinct but related subcomplexes (termed here MRBs). MRBs seem to share a ‘core’ complex of proteins but differ in the composition of the ‘variable’ proteins. Since some proteins associate transiently the MRBs remain imprecisely defined. MRB1 controls editing by unknown mechanisms, and the functional relevance of the different MRBs is unclear. We previously identified two distinct MRBs, and showed that they carry mRNAs that undergo editing. We proposed that editing takes place in the MRBs because MRBs stably associate with mRNA and gRNA but only transiently interact with RECC, which is RNA free. Here, we identify the first specialized functions in MRBs: 1) 3010-MRB is a major scaffold for RNA editing, and 2) REH2-MRB contains a critical trans-acting RNA helicase (REH2) that affects multiple steps of editing function in 3010-MRB. These trans effects of the REH2 include loading of unedited mRNA and editing in the first block and in subsequent blocks as editing progresses. REH2 binds its own MRB via RNA, and conserved domains in REH2 were critical for REH2 to associate with the RNA and protein components of its MRB. Importantly, REH2 associates with a ~30 kDa RNA-binding protein in a novel ~15S subcomplex in RNA-depleted mitochondria. We use these new results to update our model of MRB function and organization.  相似文献   
7.
8.
We have developed an empirical residue-based potential (E(z) potential) for protein insertion in lipid membranes. Propensities for occurrence as a function of depth in the bilayer were calculated for the individual amino acid types from their distribution in known structures of helical membrane proteins. The propensities were then fit to continuous curves and converted to a potential using a reverse-Boltzman relationship. The E(z) potential demonstrated a good correlation with experimental data such as amino acid transfer free energy scales (water to membrane center and water to interface), and it incorporates transmembrane helices of varying composition in the membrane with trends similar to those obtained with translocon-mediated insertion experiments. The potential has a variety of applications in the analysis of natural membrane proteins as well as in the design of new ones. It can help in calculating the propensity of single helices to insert in the bilayer and estimate their tilt angle with respect to the bilayer normal. It can be utilized to discriminate amphiphilic helices that assume a parallel orientation at the membrane interface, such as those of membrane-active peptides. In membrane protein design applications, the potential allows an environment-dependent selection of amino acid identities.  相似文献   
9.
The pathogenesis of acute pancreatitis is not fully understood. Experimental animal models that mimic human disease are essential to better understand the pathophysiology of the disease and to evaluate potential therapeutic agents. Given that the mouse genome is known completely and that a large number of strains with various genetic deletions are available, it is advantageous to have multiple reliable mouse models of acute pancreatitis. Presently, there is only one predominant model of acute pancreatitis in mice, in which hyperstimulatory doses of cholecystokinin or its analog caerulein are administered. Therefore, the aim of this study was to develop another mouse model of acute pancreatitis. In this study, C57BL/6 mice were injected intraperitoneally with L-arginine in two doses of 4 g/kg each, 1 h apart. Serum amylase, myeloperoxidase, and histopathology were examined at varying time points after injection to assess injury to the pancreas and lung. We found that injection of L-arginine was followed by significant increases in plasma amylase and pancreatic myeloperoxidase accompanied by marked histopathological changes. The injury to the pancreas was slow to develop and peaked at 72 h. Subsequent to peak injury, the damaged areas contained collagen fibers as assessed by increased Sirius red staining. In contrast, D-arginine or other amino acids did not cause injury to the pancreas. In addition, acute inflammation in the pancreas was associated with lung injury. Our results indicate that administration of L-arginine to mice results in severe acute pancreatitis. This model should help in elucidating the pathophysiology of pancreatitis.  相似文献   
10.
DNA-enzymes (Dzs) usually cleave short synthetic target RNAs very efficiently, but this activity diminishes significantly when tested on full-length RNAs, primarily because of the rigid secondary structures near the target sequence. We identified two Dzs, one each for 81-17 and 10-23 Dz, which cleaved the human immunodeficiency virus type 1 (HIV-1) Gag RNA poorly. We sought to use short oligodeoxynucleotides (ODNs) with the hope that it will facilitate Dz-mediated cleavage. The efficiencies of several ODNs were analyzed for their ability to augment the 8-17 Dz-mediated cleavage. We observed that ODNs that hybridized close to 5' and 3' ends of the target sequence were able to enhance significantly 8-17 Dz-mediated cleavage activity in a dose-dependent manner. The same was true for 10-23 Dz with ODNs that hybridized close to the target site. Thus, it was possible to enhance significantly the cleavage activity of poorly cleaving HIV-1 Gag-specific Dzs by using sequence-specific ODNs. This combination of antisense and catalytic Dz will, in principle, result in more effective gene suppression that could be exploited for therapeutic purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号