首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Normal human serum (NHS) was shown to have complement-dependent treponemicidal activity against both Treponema pallidum and Treponema phagedenis biotype Reiter (TPR) by employing in vitro-in vivo neutralization and TPR plaque assays, respectively. The molecular basis of NHS treponemicidal activity was studied by immunoblot analysis in conjunction with treponemicidal assays. Five major T. pallidum polypeptide bands (47kDa, 35kDa, 33kDa doublet, and 30 kDa) and three major TPR polypeptide bands (47kDa and 33kDa doublet) bound IgG present in NHS. Absorption of NHS with TPR completely removed both TPR and T. pallidum treponemicidal activity; corresponding immunoblots demonstrated a significant removal of IgG antibody against all three TPR polypeptide bands as well as four T. pallidum polypeptide bands (30kDa, 33kDa doublet, and 35kDa). In contrast, T. pallidum absorption of NHS was found to remove treponemicidal activity against T. pallidum but not TPR; corresponding Western blots showed the complete removal of IgG antibody against all but one T. pallidum polypeptide band (47kDa) but no detectable loss in IgG antibody against the TPR polypeptides. These results suggest that antibody in NHS generated against nonpathogenic, indigenous treponemes is responsible for the T. pallidum treponemicidal activity. Furthermore, the treponemicidal activity against T. pallidum correlated with the presence of IgG antibody against T. pallidum polypeptides of 30kDa, 35kDa, and a 33kDa doublet.  相似文献   

2.
Genetic relationships among two strains of Treponema pallidum (Nichols and KKJ) and a strain of T. pertenue were determined by measuring the degree of deoxyribonucleic acid sequence homology. The results in indicated that these three virulent, noncultivable treponemes were genetically indistinguishable. Like T. pallidum (Nichols), T. pertenue (Gauthier) had no detectable deoxyribonucleic acid sequence homology with T. phagedenis (biotype Reiter), T. refringens (biotype Noguchi), or with salmon sperm.  相似文献   

3.
In the rabbit model of syphilis, infection phenotypes associated with the Nichols and Chicago strains of Treponema pallidum (T. pallidum), though similar, are not identical. Between these strains, significant differences are found in expression of, and antibody responses to some candidate virulence factors, suggesting the existence of functional genetic differences between isolates. The Chicago strain genome was therefore sequenced and compared to the Nichols genome, available since 1998. Initial comparative analysis suggested the presence of 44 single nucleotide polymorphisms (SNPs), 103 small (≤3 nucleotides) indels, and 1 large (1204 bp) insertion in the Chicago genome with respect to the Nichols genome. To confirm the above findings, Sanger sequencing was performed on most loci carrying differences using DNA from Chicago and the Nichols strain used in the original T. pallidum genome project. A majority of the previously identified differences were found to be due to errors in the published Nichols genome, while the accuracy of the Chicago genome was confirmed. However, 20 SNPs were confirmed between the two genomes, and 16 (80.0%) were found in coding regions, with all being of non-synonymous nature, strongly indicating action of positive selection. Sequencing of 16 genomic loci harboring SNPs in 12 additional T. pallidum strains, (SS14, Bal 3, Bal 7, Bal 9, Sea 81-3, Sea 81-8, Sea 86-1, Sea 87-1, Mexico A, UW231B, UW236B, and UW249C), was used to identify "Chicago-" or "Nichols -specific" differences. All but one of the 16 SNPs were "Nichols-specific", with Chicago having identical sequences at these positions to almost all of the additional strains examined. These mutations could reflect differential adaptation of the Nichols strain to the rabbit host or pathoadaptive mutations acquired during human infection. Our findings indicate that SNPs among T. pallidum strains emerge under positive selection and, therefore, are likely to be functional in nature.  相似文献   

4.
Cultivation of pathogenic treponema in tissue cultures of SflEp cells   总被引:1,自引:0,他引:1  
Recently, the successful in vitro cultivation of the Nichols strain of Treponema pallidum was achieved. Afterward, attempts were made to cultivate three other strains of T. pallidum and two strains of T. pertenue. The cultivation of the KKJ, Mexico A, and Bosnia A strains of T. pallidum was somewhat successful; the average increases were 10.8, 9.1, and 7.5-fold, respectively. The range of growth for each of these strains varied dramatically from experiment to experiment. The KKJ strain varied from 14.4 to 8.0-fold; the Mexico A strain from 12.8 to 5.4-fold; and the Bosnia A strain from 11.3 to 3.6-fold. However, the attempts to cultivate the Gauthier and the FB strains of T. pertenue were unsuccessful. The average increases were 1.7 and 1.9-fold, respectively. Although the maximum growth observed was about threefold with either of these strains of T. pertenue, over 50% of the treponemes remained motile for 10 d. These results suggest that although each of these strains of T. pallidum and T. pertenue has been shown to be genetically identical, they are very diverse biologically even among strains of the same species.  相似文献   

5.
The periplasmic flagella of many spirochetes contain multiple proteins. In this study, two-dimensional electrophoresis, Western blotting (immunoblotting), immunoperoxidase staining, and N-terminal amino acid sequence analysis were used to characterize the individual periplasmic flagellar proteins of Treponema pallidum subsp. pallidum (Nichols strain) and T. phagedenis Kazan 5. Purified T. pallidum periplasmic flagella contained six proteins (Mrs = 37,000, 34,500, 33,000, 30,000, 29,000, and 27,000), whereas T. phagedenis periplasmic flagella contained a major 39,000-Mr protein and a group of two major and two minor 33,000- to 34,000-Mr polypeptide species; 37,000- and 30,000-Mr proteins were also present in some T. phagedenis preparations. Immunoblotting with monospecific antisera and monoclonal antibodies and N-terminal sequence analysis indicated that the major periplasmic flagellar proteins were divided into two distinct classes, designated class A and class B. Class A proteins consisted of the 37-kilodalton (kDa) protein of T. pallidum and the 39-kDa polypeptide of T. phagedenis; class B included the T. pallidum 34.5-, 33-, and 30-kDa proteins and the four 33- and 34-kDa polypeptide species of T. phagedenis. The proteins within each class were immunologically cross-reactive and possessed similar N-terminal sequences (67 to 95% homology); no cross-reactivity or sequence homology was evident between the two classes. Anti-class A or anti-class B antibodies did not react with the 29- or 27-kDa polypeptides of T. pallidum or the 37- and 30-kDa T. phagedenis proteins, indicating that these proteins are antigenically unrelated to the class A and class B proteins. The lack of complete N-terminal sequence homology among the major periplasmic flagellar proteins of each organism indicates that they are most likely encoded by separate structural genes. Furthermore, the N-terminal sequences of T. phagedenis and T. pallidum periplasmic flagellar proteins are highly conserved, despite the genetic dissimilarity of these two species.  相似文献   

6.
Miller, James N. (University of California School of Medicine, Los Angeles), J. H. De Bruijn, and J. H. Bekker. Immunity in experimental syphilis. IV. Serological reactivity of antigens extracted from gamma-irradiated Treponema pallidum and Treponema reiteri. J. Bacteriol. 91:583-587. 1966.-Ultrasonic lysate preparations extracted from virulent Treponema pallidum, Nichols strain, suspensions exposed to 652,800 R of gamma-irradiation exhibited a loss in the serological reactivity of their heat-labile antigens; the heat-stable components of both the lysate and residue antigens were unaffected. The activity of heat-stable, cardiolipin T. pallidum complement-fixing antigen obtained from similarly irradiated organisms was also unaltered. gamma-Irradiation of the cultivable Treponema reiteri with dosages as high as 6,500,000 R failed to alter serologically either the heat-labile or heat-stable component of its lipopolysaccharide-protein (Reiter protein) antigen. The reactivity of the lipopolysaccharide portion of the Reiter protein complex with an antiserum to T. pallidum Nichols indicates previously unsuspected antigenic differences between the rabbit-adapted Nichols strain of the organism and so-called "wild" human strains of T. pallidum in which this antigen is generally absent.  相似文献   

7.
Treponemicidal activity against Treponema pallidum, Nichols strain, by anti-endoflagellar antibodies and the presence of antigenic interrelationships between the endoflagella of Treponema phagedenis biotype Reiter (TPR) and T. pallidum have been demonstrated. SDS-PAGE profiles of purified endoflagella from both organisms were similar, identifying five polypeptide bands for TPR (37,000, 33,000 doublet, 30,000, and 27,000 daltons) and five polypeptide bands for T. pallidum (35,000, 33,000 doublet, 30,000, and 27,000 daltons). Antiserum against TPR endoflagella identified identical bands on Western blots of TPR, T. pallidum, and the respective endoflagellar preparations. Western blots confirmed the presence of antibodies in normal human serum (NHS) against the 33,000 dalton treponemal endoflagellar proteins. The complement-dependent treponemicidal activity of NHS against T. pallidum was completely removed by absorption with purified TPR endoflagella. Furthermore, rabbit antisera against TPR endoflagella were reactive in the Treponema pallidum immobilization (TPI) test. These findings demonstrate that anti-endoflagellar antibodies are treponemicidal against T. pallidum. A possible mechanism for this activity is discussed in relation to the subsurface location of endoflagella.  相似文献   

8.
The genomes of eight treponemes including T. p. pallidum strains (Nichols, SS14, DAL-1 and Mexico A), T. p. pertenue strains (Samoa D, CDC-2 and Gauthier), and the Fribourg-Blanc isolate, were amplified in 133 overlapping amplicons, and the restriction patterns of these fragments were compared. The approximate sizes of the genomes investigated based on this whole genome fingerprinting (WGF) analysis ranged from 1139.3-1140.4 kb, with the estimated genome sequence identity of 99.57-99.98% in the homologous genome regions. Restriction target site analysis, detecting the presence of 1773 individual restriction sites found in the reference Nichols genome, revealed a high genome structure similarity of all strains. The unclassified simian Fribourg-Blanc isolate was more closely related to T. p. pertenue than to T. p. pallidum strains. Most of the genetic differences between T. p. pallidum and T. p. pertenue strains were accumulated in six genomic regions. These genome differences likely contribute to the observed differences in pathogenicity between T. p. pallidum and T. p. pertenue strains. These regions of sequence divergence could be used for the molecular detection and discrimination of syphilis and yaws strains.  相似文献   

9.
Plasmid DNA has been isolated by soft alkaline and hard alkaline lysis from a pathogenic strain (Nichols) and two cultural strains (Reiter and VIII) of Treponema pallidum. Plasmid DNA was identified in all three strains. The molecular mass of identified plasmid DNA is 7 x 10(6) daltons according to the data of electrophoretic analysis in the agarose gel.  相似文献   

10.
以梅毒螺旋体(Treponema pallidumsubsp.pallidum)Nichols菌株基因组DNA为模板,通过PCR扩增梅毒螺旋体47kDa、17kDa和15kDa 3个膜抗原基因,克隆进毕赤酵母表达载体pPICZ B,构建重组表达载体pTP47、pTP17、pTP15,转化酵母菌株GS115,甲醇诱导表达。表达菌体裂解后通过镍离子亲和层析获得3个抗原与6xHis tag的融合蛋白,重组蛋白的获得量分别为His-TP15:4.8mg/L;His-TP 17:6.6mg/L;His-TP47:25mg/L,经SDS-PAGE鉴定纯度都在96%以上,ELISA鉴定均具有很好的抗原性。从而首次在毕赤酵母中表达出梅毒螺旋体膜抗原,为梅毒血清学检测方法开辟了新的抗原制备途径。  相似文献   

11.
Three genetically distinct groups of treponemes have been identified by saturation reassociation assays using 125I-labeled treponemal DNAs. The three groups are (i) virulent Treponema pallidum (Nichols strain), (ii) T. phagedenis and its biotypes Reiter and Kazan 5, and (iii) T. refringens biotypes Nichols and Noguchi. There is no detectable DNA sequence homology (less than 5%) among the three groups. The groups have distinct guanine + cytosine contents: 52.4 to 53.7% for T. pallidum, 41.5% for T. refringens, and 38 to 39% for T. phagedenis.  相似文献   

12.
Outer envelopes of Treponema hyodysenteriae strains P18A and VS1 were prepared and characterized by SDS-PAGE. In Western blot analysis of eleven strains of T. hyodysenteriae and two intestinal non-pathogenic spirochaetes, polyclonal antiserum raised to the outer envelopes of strain P18A contained antibodies primarily to two polypeptides. A 45 kDa polypeptide was present in only two strains of T. hyodysenteriae, P18A and MC52/80, whereas another antigen of 16 kDa was common to all eleven strains of T. hyodysenteriae but was not present in the two nonpathogens. Immunogold labelling of whole organisms suggested that the 16 kDa antigen was present on the surface of the spirochaetes. In in vitro tests the serum agglutinated and inhibited growth of only the T. hyodysenteriae strains, suggesting that antibodies to the 16 kDa antigen were responsible for these activities. Serum from a gnotobiotic pig infected with T. hyodysenteriae strain P18A had antibodies to the 16 kDa antigen alone and also possessed agglutinating and growth-inhibitory activities.  相似文献   

13.
Characterization of monoclonal antibodies to Treponema pallidum   总被引:19,自引:0,他引:19  
Thirteen hybrid cell lines which produce mouse monoclonal antibodies to Treponema pallidum, the causative agent of syphilis, have been established. All of the monoclonal antibodies react with T. pallidum, Nichols strain, in ELISA and in immunofluorescence assays, but do not react with normal rabbit testicular tissue in the ELISA. Two of these antibodies were demonstrated to react with the nonpathogenic treponemes T. phagedenis, biotype Reiter, T. refringens (Noguchi strain), T. vincentii, and T. denticola (strains 11 and W), as well as with Borrelia recurrentis, Leptospira interrogans, serogroup Canicola, and the swine pathogen T. hyodysenteriae. The remaining 11 antibodies react with four recently isolated strains of T. pallidum, but with none of the related nonpathogens nor with Borrelia or Leptospira. Thus, our results to date indicate that these monoclonal antibodies may identify antigenic determinants that are specific either for T. pallidum alone or for those treponemes which are pathogenic for humans. The molecular specificities of six of the 13 antibodies were determined by Western blotting. We anticipate potential usefulness of these antibodies in the investigation of the antigenic structure of T. pallidum, the taxonomic study of the pathogenic and nonpathogenic treponemes, and in the diagnosis of syphilis.  相似文献   

14.
Abstract The 16S-23S intergenic spacers of Treponema pallidum subspecies pallidum , Nichols strain, and Treponema pallidum subspecies pertenue , Gauthier strain, have been cloned, characterized and sequenced. Isoleucine and alanine tRNA genes have been identified within the 16S-23S intergenic regions on separate alleles of 293 and 303 bases, respectively. The two alleles are present in both T.p. pallidum and T.p. pertenue , and show no sequence differences between the bacterial subspecies. The ile-tRNA and ala-tRNA genes show 65% and 84% sequence identity, respectively, with the homologous genes of the related spirochete, Borrelia burgdorferi .  相似文献   

15.
Although the three Treponema pallidum subspecies (T. pallidum subsp. pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum), Treponema paraluiscuniculi, and the unclassified Fribourg-Blanc treponeme cause clinically distinct diseases, these pathogens are genetically and antigenically highly related and are able to cause persistent infection. Recent evidence suggests that the putative surface-exposed variable antigen TprK plays an important role in both treponemal immune evasion and persistence. tprK heterogeneity is generated by nonreciprocal gene conversion between the tprK expression site and donor sites. Although each of the above-mentioned species and subspecies has a functional tprK antigenic variation system, it is still unclear why the level of expression and the rate at which tprK diversifies during infection can differ significantly among isolates. To identify genomic differences that might affect the generation and expression of TprK variants among these pathogens, we performed comparative sequence analysis of the donor sites, as well as the tprK expression sites, among eight T. pallidum subsp. pallidum isolates (Nichols Gen, Nichols Sea, Chicago, Sea81-4, Dal-1, Street14, UW104, and UW126), three T. pallidum subsp. pertenue isolates (Gauthier, CDC2, and Samoa D), one T. pallidum subsp. endemicum isolate (Iraq B), the unclassified Fribourg-Blanc isolate, and the Cuniculi A strain of T. paraluiscuniculi. Synteny and sequence conservation, as well as deletions and insertions, were found in the regions harboring the donor sites. These data suggest that the tprK recombination system is harbored within dynamic genomic regions and that genomic differences might be an important key to explain discrepancies in generation and expression of tprK variants among these Treponema isolates.  相似文献   

16.
The genomic DNA fragment which contains ribosomal RNA (rRNA) genes for Treponema phagedenis was cloned into bacteriophage vector lambda EMBL3. A restriction map of the fragment was constructed and the organization of the rRNA genes was determined. The fragment contained at least one copy of the 16S, 23S and 5S sequences and the genes are arranged in the order 16S-23S-5S. Southern hybridization using radiolabeled rRNA gene probes to genomic DNA from T. phagedenis strain Reiter and T. pallidum strain Nichols showed that these organisms have two radioactive fragments which hybridize to the probes in their genome. These results suggest that both pathogenic and non-pathogenic strains of Treponema may carry at least two sets of rRNA genes on their chromosomes.  相似文献   

17.
Treponema pallidum and other members of the genera Treponema, Spirochaeta, and Leptonema contain multiple cytoplasmic filaments that run the length of the organism just underneath the cytoplasmic membrane. These cytoplasmic filaments have a ribbon-like profile and consist of a major cytoplasmic filament protein subunit (CfpA, formerly called TpN83) with a relative molecular weight of approximately 80,000. Degenerate DNA primers based on N-terminal and CNBr cleavage fragment amino acid sequences of T. pallidum subsp. pallidum (Nichols) CfpA were utilized to amplify a fragment of the encoding gene (cfpA). A 6.8-kb EcoRI fragment containing all but the 5' end of cfpA was identified by hybridization with the resulting PCR product and cloned into Lambda ZAP II. The 5' region was obtained by inverse PCR, and the complete gene sequence was determined. The cfpA sequence contained a 2,034-nucleotide coding region, a putative promoter with consensus sequences (5'-TTTACA-3' for -35 and 5'-TACAAT-3' for -10) similar to the sigma70 recognition sequence of Escherichia coli and other organisms, and a putative ribosome-binding site (5'-AGGAG-3'). The deduced amino acid sequence of CfpA indicated a protein of 678 residues with a calculated molecular mass of 78.5 kDa and an estimated pI of 6.15. No significant homology to known proteins or structural motifs was found among known prokaryotic or eukaryotic sequences. Expression of a LacZ-CfpA fusion protein in E. coli was detrimental to survival and growth of the host strain and resulted in the formation of short, irregular filaments suggestive of partial self-assembly of CfpA. The cytoplasmic filaments of T. pallidum and other spirochetes appear to represent a unique form of prokaryotic intracytoplasmic inclusions.  相似文献   

18.
Electron microscopy and SDS-PAGE have been used to analyse the polypeptide and antigenic composition of the sheath and core components of the axial filament of Treponema pallidum. The sheath contains a major 37 kDa polypeptide which was solubilized by a combination of trypsin and urea treatments with concurrent loss of binding of anti-37 kDa monoclonal antibody. These studies also indicated some antigenic heterogeneity within the axial filament population. Trypsin treatment alone removed a number of antigenic determinants from the axial filament but left others intact, suggesting differences in their location within the sheath structure. A second 31.5 kDa polypeptide may also be associated with the sheath. The axial filament core comprises at least two components, an antigenically dominant 33.5 kDa polypeptide and a second of 34 kDa. The structure of the axial filament in T. pallidum and Treponema phagedenis biotype Reiterii was similar, but antigenic cross-reactivity of sheath and core components was incomplete.  相似文献   

19.
Material extracted from the Nichols nonpathogenic strain of Treponema pallidum by phenol-water was analyzed by employing a recently reported colorimetric test for detection of lipopolysaccharide (LPS). The fraction isolated from T. pallidum, in combination with the reagent dye, absorbed maximally at a wavelength in the range reported to be positive for LPS. Comparison of this reaction to that of a commercial preparation of Escherichia coli LPS revealed that time and temperature of incubation of the LPS-dye complexes were important variables which had marked but different effects on the LPS of the two sources. However, with careful control of these parameters, concentration-dependent standard curves were established for LPS of both sources. Our results indicate the cell wall of T. pallidum is similar to that of gram-negative organisms.  相似文献   

20.
Murine monoclonal antibodies (Mabs) were raised against two outer-membrane-associated polypeptides of Treponema pallidum (47 and 44 kDa). Three Mabs against each polypeptide were investigated further and only those directed against the 44 kDa polypeptide were demonstrated to have immobilizing activity. The specificity of the Mabs for T. pallidum was determined by Western blotting procedures and the surface association of the antigens was inferred by immunogold electron microscopy. The clear distinction between these two polypeptides in their biological activity could help to explain the pathobiology of syphilis infections as the 47 kDa antigen has been shown to be associated with the outer membrane of this organism. Inactivity of such a surface-located protein in antibody-mediated anti-treponemal mechanisms could account for the observed ability of this organism to survive in the face of strong antibody responses in infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号