首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   9篇
  2020年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   8篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1960年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
Under study was the dynamics of formation of pseudointima in a synthetic lavsan prosthesis of the aorta of 32 rabbits, 22 of them were on the atherogenic diet. Against the background of experimental hypercholesterolemia the proliferation of cells and the obliteration of the vessel lumen were found to proceed more rapidly than in normal animals.  相似文献   
2.
We have developed a novel technology that makes it possible to detect simple nucleotide polymorphisms directly within a sample of total genomic DNA. It allows, in a single Southern blot experiment, the determination of sequence identity of genomic regions with a combined length of hundreds of kilobases. This technology does not require PCR amplification of the target DNA regions, but exploits preparative size-fractionation of restriction-digested genomic DNA and a newly discovered property of the mismatch-specific endonuclease CEL I to cleave heteroduplex DNA with a very high specificity and sensitivity. We have used this technique to detect various simple mutations directly in the genomic DNA of isogenic pairs of recombinant Pseudomonas aeruginosa, Escherichia coli and Salmonella isolates. Also, by using a cosmid DNA library and genomic fractions as hybridization probes, we have compared total genomic DNA of two clinical P.aeruginosa clones isolated from the same patient, but exhibiting divergent phenotypes. The mutation scan correctly detected a GA insertion in the quorum-sensing regulator gene rhlR and, in addition, identified a novel intragenomic polymorphism in rrn operons, indicating very high stability of the bacterial genomes under natural non-mutator conditions.  相似文献   
3.
The biology of Escherichia coli in its primary niche, the animal intestinal tract, is remarkably unexplored. Studies with the streptomycin-treated mouse model have produced important insights into the metabolic requirements for Escherichia coli to colonize mice. However, we still know relatively little about the physiology of this bacterium growing in the complex environment of an intestine that is permissive for the growth of competing flora. We have developed a system for studying colonization using an E. coli strain, MP1, isolated from a mouse. MP1 is genetically tractable and does not require continuous antibiotic treatment for stable colonization. As an application of this system, we separately knocked out each two-component system response regulator in MP1 and performed competitions against the wild-type strain. We found that only three response regulators, ArcA, CpxR, and RcsB, produce strong colonization defects, suggesting that in addition to anaerobiosis, adaptation to cell envelope stress is a critical requirement for E. coli colonization of the mouse intestine. We also show that the response regulator OmpR, which had previously been hypothesized to be important for adaptation between in vivo and ex vivo environments, is not required for MP1 colonization due to the presence of a third major porin.  相似文献   
4.
5.
High shear enhances the adhesion of Escherichia coli bacteria binding to mannose coated surfaces via the adhesin FimH, raising the question as to whether FimH forms catch bonds that are stronger under tensile mechanical force. Here, we study the length of time that E. coli pause on mannosylated surfaces and report a double exponential decay in the duration of the pauses. This double exponential decay is unlike previous single molecule or whole cell data for other catch bonds, and indicates the existence of two distinct conformational states. We present a mathematical model, derived from the common notion of chemical allostery, which describes the lifetime of a catch bond in which mechanical force regulates the transitions between two conformational states that have different unbinding rates. The model explains these characteristics of the data: a double exponential decay, an increase in both the likelihood and lifetime of the high-binding state with shear stress, and a biphasic effect of force on detachment rates. The model parameters estimated from the data are consistent with the force-induced structural changes shown earlier in FimH. This strongly suggests that FimH forms allosteric catch bonds. The model advances our understanding of both catch bonds and the role of allostery in regulating protein activity.  相似文献   
6.
7.
Some recently studied biological noncovalent bonds have shown increased lifetime when stretched by mechanical force. In each case these counterintuitive "catch-bonds" have transitioned into ordinary "slip-bonds" that become increasingly shorter lived as the tensile force on the bond is further increased. We describe analytically how these results are supported by a physical model whereby the ligand escapes the receptor binding site via two alternative routes, a catch-pathway that is opposed by the applied force and a slip-pathway that is promoted by force. The model predicts under what conditions and at what critical force the catch-to-slip transition would be observed, as well as the degree to which the bond lifetime is enhanced at the critical force. The model is applied to four experimentally studied systems taken from the literature, involving the binding of P- and L-selectins to sialyl Lewis(X) oligosaccharide-containing ligands. Good quantitative fit to the experimental data is obtained, both for experiments with a constant force and for experiments where the force increases linearly with time.  相似文献   
8.
FimH, the adhesive subunit of type 1 fimbriae expressed by many enterobacteria, mediates mannose-sensitive binding to target host cells. At the same time, fine receptor-structural specificities of FimH from different species can be substantially different, affecting bacterial tissue tropism and, as a result, the role of the particular fimbriae in pathogenesis. In this study, we compared functional properties of the FimH proteins from Escherichia coli and Klebsiella pneumoniae, which are both 279 amino acids in length but differ by some ∼15% of residues. We show that K. pneumoniae FimH is unable to mediate adhesion in a monomannose-specific manner via terminally exposed Manα(1-2) residues in N-linked oligosaccharides, which are the structural basis of the tropism of E. coli FimH for uroepithelial cells. However, K. pneumoniae FimH can bind to the terminally exposed Manα(1-3)Manβ(1-4)GlcNAcβ1 trisaccharide, though only in a shear-dependent manner, wherein the binding is marginal at low shear force but enhanced sevenfold under increased shear. A single mutation in the K. pneumoniae FimH, S62A, converts the mode of binding from shear dependent to shear independent. This mutation has occurred naturally in the course of endemic circulation of a nosocomial uropathogenic clone and is identical to a pathogenicity-adaptive mutation found in highly virulent uropathogenic strains of E. coli, in which it also eliminates the dependence of E. coli binding on shear. The shear-dependent binding properties of the K. pneumoniae and E. coli FimH proteins are mediated via an allosteric catch bond mechanism. Thus, despite differences in FimH structure and fine receptor specificity, the shear-dependent nature of FimH-mediated adhesion is highly conserved between bacterial species, supporting its remarkable physiological significance.The most common type of adhesive organelle in the Enterobacteriaceae is the type 1 fimbria, which has been most extensively studied in Escherichia coli. The corresponding structures of Klebsiella pneumoniae are similar to those of E. coli with regard to genetic composition and regulation (15). Type 1 fimbriae are composed primarily of the structural subunit FimA, with minor amounts of three ancillary subunits, FimF, FimG, and the mannose-specific adhesin FimH. The FimH adhesin is an allosteric protein that mediates the catch bond mechanism of adhesion where the binding is increased under increased shear stress (48).It has been demonstrated in E. coli that FimH has two domains, the mannose-binding lectin domain (from amino acid [aa] 1 through 156) and the fimbria-incorporating pilin domain (from aa 160 through 279), connected via a 3-aa-long linker chain (6). A mannose-binding site is located at the top of the lectin domain, at the opposite end from the interdomain linker (17).Several studies have demonstrated that type 1 fimbriae play an important role in E. coli urinary tract infection (UTI) (7, 21, 23, 35). In addition, in urinary E. coli isolates, the FimH adhesin accumulates amino acid replacements which increase tropism for the uroepithelium and various components of basement membranes (21, 30, 35, 37, 49). Most of the replacements increase the monomannose binding capability of FimH under low shear, by altering allosteric catch bond properties of the protein (48). The mutated FimH variants were shown to provide an advantage in colonization of the urinary tract in the mouse model (35) and correlate with the overall extraintestinal virulence of E. coli (16). Thus, FimH mutations are pathoadaptive in nature.Klebsiella pneumoniae is recognized as an important opportunistic pathogen frequently causing UTIs, septicemia, or pneumonia in immunocompromised individuals (29). It is responsible for up to 10% of all nosocomial bacterial infections (18, 41). K. pneumoniae is ubiquitous in nature, and it has been shown that environmental isolates are phenotypically indistinguishable from clinical isolates (22, 26, 27, 29, 33). Furthermore, it has been demonstrated that environmental isolates of K. pneumoniae are as virulent as clinical isolates (28, 45).K. pneumoniae possesses a number of known virulence factors, including a pronounced capsule, type 3 fimbriae, and type 1 fimbriae (29, 44). Type 1 fimbriae produced by K. pneumoniae are described as functionally and structurally similar to type 1 fimbriae from E. coli (25) and have been shown to play a significant role in K. pneumoniae UTI (32, 43).We have previously shown that mature FimH from 54 isolates of K. pneumoniae (isolated from urine, blood, liver, and the environment) is represented by seven protein variants due to point amino acid replacements. (42) When K. pneumoniae FimH was aligned with the FimH of E. coli, they showed ∼85% similarity at the amino acid level. Furthermore, a majority (14 out of 21 isolates) of the K. pneumoniae strains isolated from patients with UTI grouped into a single clonal group based on multilocus sequence typing, but fimH in one isolate in the group differed from the others by a single nucleotide mutation resulting in an amino acid change, serine to alanine, in position 62 (42). The same mutation has been found in FimH of a highly uropathogenic clone of E. coli and significantly increases the adhesin''s ability to adhere to monomannose under low or no shear (19, 39, 50).In this study, we describe the extent and pattern of structural variability of the FimH protein from K. pneumoniae and perform comparative analyses of the functional properties of FimH from both K. pneumonae and E. coli.  相似文献   
9.
Pathoadaptive mutations: gene loss and variation in bacterial pathogens.   总被引:22,自引:0,他引:22  
Pathogenicity-adaptive, or pathoadaptive, mutations represent a genetic mechanism for enhancing bacterial virulence without horizontal transfer of specific virulence factors. Pathoadaptive evolution can be important within single infections and for defining the population structure of a pathogenic species.  相似文献   
10.
In pathogenic bacteria, point and other simple mutations can provide a strong selective advantage during the course of a single infection. Our understanding of the importance of these randomly occurring mutations has been hampered by a lack of technologies allowing mutation scanning on a genomic scale. Here, a novel technology is described that makes it possible to scan, in a single Southern blot experiment, the sequence identity of genomic regions with a combined length of hundreds of kilobases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号