首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Fatty acid synthase (FASN) is a multifunctional protein that catalyzes de novo synthesis of fatty acids in cells. It plays a key role in the lipid biosynthesis as well as in the general metabolism of all living animals. We herein investigated polymorphisms of FASN. As a result, six single nucleotide polymorphisms (SNPs) were found and then genotyped in 752 Chinese Holstein cows. It was found that g.17924A>G was non‐synonymous, g.13965 C>T, g.16907 T>C and g.18663T>C were synonymous mutations and two other two SNPs, g.8948 C>T (ss491228481) and g.14439T>C (rs133498277), were in intronic sequences of the gene. All such identified SNPs were found to be associated with milk yield and composition traits (= 0.0441 to <0.0001). Significant additive and allele substitution effects were observed for three yield traits at all six loci as well (< 0.05 to <0.01). Complete linkage disequilibrium among the five SNPs, with the exception of g.8948 C>T, was observed.  相似文献   

2.
Neuroblastoma ranks as the most commonly seen and deadly solid tumour in infancy. The aberrant activity of m6A‐RNA methyltransferase METTL3 is involved in human cancers. Therefore, functional genetic variants in the METTL3 gene may contribute to neuroblastoma risk. In the current nine‐centre case‐control study, we aimed to analyse the association between the METTL3 gene single nucleotide polymorphisms (SNPs) and neuroblastoma susceptibility. We genotyped four METTL3 gene SNPs (rs1061026 T>G, rs1061027 C>A, rs1139130 A>G, and rs1263801 G>C) in 968 neuroblastoma patients and 1814 controls in China. We found significant associations between these SNPs and neuroblastoma risk in neither single‐locus nor combined analyses. Interestingly, in the stratified analysis, we observed a significant risk association with rs1061027 AA in subgroups of children ≤ 18 months of age (adjusted OR = 1.87, 95% CI = 1.03‐3.41, P = .040) and females (adjusted OR = 1.86, 95% CI = 1.07‐3.24, P = .028). Overall, we identified a significant association between METTL3 gene rs1061027 C>A polymorphism and neuroblastoma risk in children ≤18 months of age and females. Our findings provide novel insights into the genetic determinants of neuroblastoma.  相似文献   

3.
The stearoyl‐CoA desaturase (delta‐9‐desaturase) gene encodes a key enzyme in the cellular biosynthesis of monounsaturated fatty acids. In our initial genome‐wide association study (GWAS) of Chinese Holstein cows, 19 SNPs fell in a 1.8‐Mb region (20.3–22.1 Mb) on chromosome 26 underlying the SCD gene and were highly significantly associated with C14:1 or C14 index. The aims of this study were to verify whether the SCD gene has significant genetic effects on milk fatty acid composition in dairy cattle. By resequencing the entire coding region of the bovine SCD gene, a total of six variations were identified, including three coding variations (g.10153G>A, g.10213T>C and g.10329C>T) and three intronic variations (g.6926A>G, g.8646G>A and g.16158G>C). The SNP in exon 3, g.10329C>T, was predicted to result in an amino acid replacement from alanine (GCG) to valine (GTG) in the SCD protein. An association study for 16 milk fatty acids using 346 Chinese Holstein cows with accurate phenotypes and genotypes was performed using the mixed animal model with the proc mixed procedure in sas 9.2. All six detected SNPs were revealed to be associated with six medium‐ and long‐chain unsaturated fatty acids (= 0.0457 to < 0.0001), specifically for C14:1 and C14 index (= 0.0005 to < 0.0001). Subsequently, strong linkage disequilibrium (D′ = 0.88–1.00) was observed among all six SNPs in SCD and the five SNPs (rs41623887, rs109923480, rs42090224, rs42092174 and rs42091426) within the 1.8‐Mb region identified in our previous GWAS, indicating that the significant association of the SCD gene with milk fatty acid content traits reduced the observed significant 1.8‐Mb chromosome region in GWAS. Haplotype‐based analysis revealed significant associations of the haplotypes encompassing the six SCD SNPs and one SNP (rs109923480) in a GWAS with C14:1, C14 index, C16:1 and C16 index (= 0.0011 to < 0.0001). In summary, our findings provide replicate evidence for our previous GWAS and demonstrate that variants in the SCD gene are significantly associated with milk fatty acid composition in dairy cattle, which provides clear evidence for an increased understanding of milk fatty acid synthesis and enhances opportunities to improve milk‐fat composition in dairy cattle.  相似文献   

4.
5.
6.
Guanzhong (= 321) and Boer (= 191) goat breeds were used to detect single nucleotide polymorphisms (SNPs) in the coding regions of the prolactin receptor (PRLR) gene by DNA sequencing and PCR‐RFLP. Two SNPs (c.1457G>A and c.1645G>A) were identified that caused amino acid variations p.Ser485Asn and p.Val548Met respectively. Statistical results indicated that the c.1457G>A and c.1645G>A SNPs were significantly associated with litter size in Boer and Guanzhong goat breeds. Further analysis revealed that combined genotype C4 (GGGG) and haplotype G‐G were better than the others for litter size in both goat breeds. These results might contribute to goat genetic resources and breeding.  相似文献   

7.
To find out the relationship between SNP genotypes of canine olfactory receptor genes and olfactory ability, 28 males and 20 females from German Shepherd dogs in police service were scored by odor detection tests and analyzed using the Beckman GenomeLab SNPstream. The representative 22 SNP loci from the exonic regions of 12 olfactory receptor genes were investigated, and three kinds of odor (human, ice drug and trinitrotoluene) were detected. The results showed that the SNP genotypes at the OR10H1‐like:c.632C>T, OR10H1‐like:c.770A>T, OR2K2‐like:c.518G>A, OR4C11‐like:c.511T>G and OR4C11‐like:c.692G>A loci had a statistically significant effect on the scenting abilities (< 0.001). The kind of odor influenced the performances of the dogs (< 0.001). In addition, there were interactions between genotype and the kind of odor at the following loci: OR10H1‐like:c.632C>T, OR10H1‐like:c.770A>T, OR4C11‐like:c.511T>G and OR4C11‐like:c.692G>A (P < 0.001). The dogs with genotype CC at the OR10H1‐like:c.632C>T, genotype AA at the OR10H1‐like:c.770A>T, genotype TT at the OR4C11‐like:c.511T>G and genotype GG at the OR4C11‐like:c.692G>A loci did better at detecting the ice drug. We concluded that there was linkage between certain SNP genotypes and the olfactory ability of dogs and that SNP genotypes might be useful in determining dogs' scenting potential.  相似文献   

8.
Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from Kdaigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 1 ), was isolated from the AcOEt fraction (Kd‐AC). The BuOH‐soluble fraction afforded quercetin 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 2 ) and the new kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside‐7‐Oβ‐d ‐glucopyranoside ( 3 ), named daigremontrioside. The crude extract, Kd‐AC fraction, flavonoids 1 and 2 were evaluated using acyclovir‐sensitive strains of HSV‐1 and HSV‐2. Kd‐AC was highly active against HSV‐1 (EC50 = 0.97 μg/ml, SI > 206.1) and HSV‐2 (EC50 = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti‐HSV‐1 (EC50 = 7.4 μg/ml; SI > 27 and EC50 = 5.8 μg/ml; SI > 8.6, respectively) and anti‐HSV‐2 (EC50 = 9.0 μg/ml; SI > 22.2 and EC50 = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity.  相似文献   

9.
In this study, Xinong Saanen (SN) and Guanzhong (GZ) dairy goat breeds were used to detect single nucleotide polymorphisms (SNPs) in the 5′‐flanking region of the KITLG gene by DNA sequencing and primer‐introduced restriction analysis–polymerase chain reaction. Two novel SNPs (g.13090G>T and g.13664C>A) were identified (GenBank Accession no. KM658964). Furthermore, g.13090G>T and g.13664C>A loci were closely linked in SN and GZ breeds (r2 > 0.33). Association analysis results showed that g.13090G>T and g.13664C>A SNPs significantly affected litter size (< 0.05). The litter size of individuals with the combined genotype GG/CC from both dairy goat breeds was greater than that of individuals with TT/AA in average parity (< 0.05). Known biochemical and physiological functions, along with our results, indicated that GG/CC could be used in marker‐assisted selection to choose individuals with greater litter size from both breeds. These results extend the spectrum of genetic variation in the caprine KITLG gene and may contribute to genetic resources and breeding of goats.  相似文献   

10.
Idiopathic dilated cardiomyopathy (IDCM), characterized by ventricular dilation and impaired systolic function, is a primary cardiomyopathy resulting in heart failure. During heart contraction, the Z‐line is responsible for transmitting force between sarcomeres and is also a hot spot for muscle cell signalling. Mutations in Z‐line proteins have been linked to cardiomyopathies in both humans and mice. Actinin‐associated LIM protein (ALP) and enigma homolog protein (ENH), encoded by PDLIM3 and PDLIM5, are components of the muscle cytoskeleton and localize to the Z‐line. A PDLIM3 or PDLIM5 deficiency in mice leads to dilated cardiomyopathy. Since PDLIM3 and PDLIM5 are candidate IDCM susceptibility genes, the current study aims to investigate whether polymorphisms within PDLIM3 and PDLIM5 could be correlated with IDCM. We designed a case‐control study, and exons of the PDLIM3 and PDLIM5 were amplified by polymerase chain reactions in 111 IDCM patients and 137 healthy controls. We found that five synonymous polymorphisms had statistical distribution differences between IDCM patients and controls, including rs4861669, rs4862543, c.731 + 131 T > G, c.1789‐3 C > T and rs7690296, according to genotype and allele distribution. Haplotype G‐C‐C‐C and A‐T‐C‐T (rs2306705, rs10866276, rs12644280 and rs4635850 synthesized) were regarded as risk factors for IDCM patients when compared with carriers of other haplotypes (all P < .05). Furthermore, IDCM patients with two novel polymorphisms (c.731 + 131 T > G and c.1789‐3 C > T) had lower systolic blood pressure. In conclusion, these five synonymous polymorphisms might constitute a genetic background that increases the risk of the development of IDCM in the Chinese Han population.  相似文献   

11.
This study investigated the polymorphisms of GNRH1 and GDF9 genes in 641 goats of three breeds: Xinong Saanen, Guanzhong and Boer. Two allelic variants were identified in the GNRH1 gene (JN645280:g.3548A>G and JN645281:g.3699G>A) and one allelic variant was found in the GDF9 gene (JN655693:g.4093G>A). Furthermore, g.4093G>A was a missense mutation (p.Val397Ile of GDF9). Results of an association analysis indicated that SNPs g.3548A>G and g.4093G>A had significant effects on litter size (< 0.05). The combination genotypes of SNPs g.3548A>G, g.3699G>A and g.4093G>A also affected litter size with the C5 genotype having the highest litter size in the first, third, fourth and average parity. Hence, the biochemical and physiological functions, together with the results obtained in our investigation, suggest that the GNRH1 and GDF9 genes could serve as genetic markers for litter size in goat breeding.  相似文献   

12.
With the proposed global climate change, heat tolerance is becoming increasingly important to the sustainability of livestock production systems. Results from previous studies showed that variants in the prolactin releasing hormone (PRLH) (AC_000160.1:g.11764610G>A) and superoxide dismutase 1 (SOD1) (AC_000158.1:g.3116044T>A) genes play an important role in heat tolerance in African indicine cattle. However, it is unknown whether or not the mutations are associated with heat tolerance in Chinese cattle. In this study, PCR and DNA sequencing were used to genotype two missense mutations in 725 individuals of 30 cattle breeds. Analysis results demonstrated that two classes of base substitution were detected at two loci: AC_000160.1:g.11764610G>A and AC_000158.1:g.3116044T>A or T>C respectively, with amino acid substitutions arginine to histidine and phenylalanine to isoleucine or leucine. The frequencies of the G and T alleles of the two loci gradually diminished from northern groups to southern groups of native Chinese cattle, whereas the frequencies of A and A or C alleles showed a contrary pattern, displaying a significant geographical difference across native Chinese cattle breeds. Additionally, analysis of these two loci in Chinese indigenous cattle revealed that two SNPs were significantly associated with mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) (< 0.01), suggesting that cattle with A or C alleles were distributed in regions with higher T, RH and THI. Our results suggest that the two mutations of PRLH and SOD1 genes in Chinese cattle were associated with the heat tolerance.  相似文献   

13.
Recently, the SERPINA6 gene encoding corticosteroid‐binding globulin (CBG) has been proposed as a candidate gene for a quantitative trait locus (QTL) affecting cortisol level on pig chromosome 7. The QTL was repeatedly detected in different lines, including a Piétrain × (German Landrace × German Large White) cross (PiF1) and purebred German Landrace (LR). In this study, we investigated whether the known non‐synonymous polymorphisms c.44G>T, c.622C>T, c.770C>T, c.793G>A, c.832G>A and c.919G>A of SERPINA6 are sufficient to explain the QTL in these two populations. Our investigations revealed that SNPs c.44G>T, c.622C>T, c.793G>A and c.919G>A are associated with cortisol level in PiF1 (< 0.01). Haplotype analysis showed that these associations are largely attributable to differences between a major haplotype carrying SNPs c.793G>A and c.919G>A and a haplotype carrying SNPs c.44G>T and c.622C>T. Furthermore, some SNPs, particularly c.44G>T and c.622C>T and the carrier haplotype, showed association with meat quality traits including pH and conductivity (< 0.05). In LR, the non‐synonymous SNPs segregate at very low frequency (<5%) and/or show only weak association with cortisol level (SNPs c.832G>A and c.919G>A; < 0.05). These findings suggest that the non‐synonymous SNPs are not sufficient to explain the QTL across different breeds. Therefore, we examined whether the expression of SERPINA6 is affected by cis‐regulatory polymorphisms in liver, the major organ for CBG production. We found allelic expression imbalance of SERPINA6, which suggests that its expression is indeed affected by genetic variation in cis‐acting elements. This represents candidate causal variation for future studies of the molecular background of the QTL.  相似文献   

14.
Neuroblastoma ranks the most common seen solid tumour in childhood. Overexpression of LIN28A gene has been linked to the development of multiple human malignancies, but the relationship between LIN28A single nucleotide polymorphisms (SNPs) and neuroblastoma susceptibility is still under debate. Herein, we evaluated the correlation of four potentially functional LIN28A SNPs (rs3811464 G>A, rs3811463 T>C, rs34787247 G>A, and rs11247957 G>A) and neuroblastoma susceptibility in 505 neuroblastoma patients and 1070 controls from four independent hospitals in China. The correlation strengths were determined by using odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Among these SNPs, rs34787247 G>A exhibited a significant association with increased susceptibility in neuroblastoma (GA vs GG: adjusted OR = 1.30, 95% CI = 1.03‐1.64; AA vs GG: adjusted OR = 2.51, 95% CI = 1.36‐4.64, AA/GA vs GG: adjusted OR = 1.42, 95% CI = 1.12‐1.80, AA vs GG/GA: adjusted OR = 2.39, 95% CI = 1.29‐4.42). Furthermore, the combined analysis of risk genotypes revealed that subjects carrying three risk genotypes (adjusted OR = 1.64, 95% CI = 1.02‐2.63) are more inclined to develop neuroblastoma than those without risk genotype, and so do carriers of 1‐4 risk genotypes (adjusted OR = 1.26, 95% CI = 1.01‐1.56). Stratification analysis further revealed risk effect of rs3811464 G>A, rs34787247 G>A and 1‐4 risk genotypes in some subgroups. Haplotype analysis of these four SNPs yields two haplotypes significantly correlated with increased neuroblastoma susceptibility. Overall, our finding indicated that LIN28A SNPs, especially rs34787247 G>A, may increase neuroblastoma risk.  相似文献   

15.
Regarding mutations of PROP1 (Prophet of POU1F1) gene significantly associating with combined pituitary hormone deficiency (CPHD) in human patients and animals, PROP1 gene is a novel important candidate gene for detecting genetic variation and growth, reproduction, metabolism traits selection and breeding. The aim of this study was to detect PROP1 gene mutation of the exon 1–3 and its association with wool traits in 345 Chinese Merino sheep. In this study, on the basis of PCR-SSCP and DNA sequencing methods, ten novel SNPs within the sheep PROP1 gene, namely, AY533708: g.45A > G resulting in Glu15Glu, g.1198A > G, g.1341G > C resulting in Arg63Ser, g.1389G > A resulting in Ala79Ala, g.1402C > T resulting in Leu84Leu, g.1424A > G resulting in Asn91Ser, g.1522C > T, g.1556A > T, g.1574T > C, g.2430C > G were reported. In addition, association analysis showed that three genotypes of P4 fragment were significantly associated with fiber diameter in the analyzed population (P = 0.044). These results strongly suggested that polymorphisms of the PROP1 gene could be a useful molecular marker for sheep breeding and genetics through marker-assisted selection (MAS).  相似文献   

16.
Many variants of uncertain functional significance in cancer susceptibility genes lie in regulatory regions, and clarifying their association with disease risk poses significant challenges. We studied 17 germline variants (nine of which were novel) in the CDKN2A 5′UTR with independent approaches, which included mono and bicistronic reporter assays, Western blot of endogenous protein, and allelic representation after polysomal profiling to investigate their impact on CDKN2A mRNA translation regulation. Two of the novel variants (c.‐27del23, c.‐93‐91delAGG) were classified as causal mutations (score ≥3), along with the c.‐21C>T, c.‐34G>T, and c.‐56G>T, which had already been studied by a subset of assays. The novel c.‐42T>A as well as the previously described c.‐67G>C were classified as potential mutations (score 1 or 2). The remaining variants (c.‐14C>T, c.‐20A>G, c.‐25C>T+c.‐180G>A, c.‐30G>A, c.‐40C>T, c.‐45G>A, c.‐59C>G, c.‐87T>A, c.‐252A>T) were classified as neutral (score 0). In conclusion, we found evidence that nearly half of the variants found in this region had a negative impact on CDKN2A mRNA translation, supporting the hypothesis that 5′UTR can act as a cellular Internal Ribosome Entry Site (IRES) to modulate p16INK4a translation.  相似文献   

17.
Xeroderma pigmentosum group G (XPG) protein plays an important role in the DNA repair process by cutting the damaged DNA at the 3′ terminus. Previous studies have indicated some polymorphisms in the XPG gene are associated with stomach cancer susceptibility. We performed this hospital‐based case–control study to evaluate the association of four potentially functional XPG polymorphisms (rs2094258 C>T, rs751402 C>T, rs2296147 T>C and rs873601G>A) with stomach cancer susceptibility. The four single nucleotide polymorphisms (SNPs) were genotyped in 692 stomach cancer cases and 771 healthy controls. Logistic regression analysis was conducted, and odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the association of interest. Of the studied SNPs, XPG rs873601G>A polymorphism was found to significantly associate with stomach cancer susceptibility (AA versus GG/AG: OR = 1.31, 95% CI = 1.03–1.66, P = 0.027). Combined analysis of all SNPs revealed that the individuals with two of risk genotypes had a significantly increased stomach cancer risk (OR = 1.52, 95% CI = 1.13–2.06). In the stratification analysis, the association between the rs873601AA genotype and stomach cancer risk was observed in older group (>59 year), as well as patients with non‐cardia stomach cancer. Further combined analysis indicated men, smokers, or non‐drinkers more than one risk genotypes had a significantly increased stomach cancer risk. Our results indicate that XPG rs873601G>A polymorphism may be associated with the risk of stomach cancer. Further prospective studies with different ethnicities and large sample sizes are needed to validate our findings.  相似文献   

18.
L. Shi  L. Liu  Z. Ma  X. Lv  C. Li  L. Xu  B. Han  Y. Li  F. Zhao  Y. Yang  D. Sun 《Animal genetics》2019,50(5):430-438
Our previous genome‐wide association study identified 83 genome‐wide significant SNPs and 20 novel promising candidate genes for milk fatty acids in Chinese Holstein. Among them, the enoyl‐CoA hydratase, short chain 1 (ECHS1) and enoyl‐CoA hydratase and 3‐hydroxyacyl CoA dehydrogenase (EHHADH) genes were located near two SNPs and one SNP respectively, and they play important roles in fatty acid metabolism pathways. We herein validated whether the two genes have genetic effects on milk fatty acid traits in dairy cattle. By re‐sequencing the full‐length coding region, partially adjacent introns and 3000 bp up/downstream flanking sequences, we identified 12 SNPs in ECHS1: two in exons, four in the 3′ flanking region and six in introns. The g.25858322C>T SNP results in an amino acid replacement from leucine to phenylalanine and changes the secondary structure of the ECHS1 protein, and single‐locus association analysis showed that it was significantly associated with three milk fatty acids (= 0.0002–0.0013). The remaining 11 SNPs were found to be significantly associated with at least one milk fatty acid (= <0.0001–0.0040). Also, we found that two haplotype blocks, consisting of nine and two SNPs respectively, were significantly associated with eight milk fatty acids (= <0.0001–0.0125). However, none of polymorphisms was observed in the EHHADH gene. In conclusion, our findings are the first to indicate that the ECHS1 gene has a significant genetic impact on long‐chain unsaturated and medium‐chain saturated fatty acid traits in dairy cattle, although the biological mechanism is still undetermined and requires further in‐depth validation.  相似文献   

19.
Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis‐type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9‐fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine‐rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号