首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage‐structured, seasonal, nonlinear, two‐sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture‐mark‐recapture analysis, we find that seasonal sea ice concentration anomalies (SICa) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa, because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa. We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa, which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are linked to IPCC climate models, is powerful and generally applicable to other species and systems.  相似文献   

2.
In many bird species, parents adjust their home‐ranges during chick‐rearing to the availability and distribution of food resources, balancing the benefits of energy intake against the costs of travelling. Over recent decades, European agricultural landscapes have changed radically, resulting in the degradation of habitats and reductions in food resources for farmland birds. Lower foraging success and longer foraging trip distances that result from these changes are often assumed to reduce the reproductive performance of parents, although the mechanisms are not well understood. We tested the behavioural response of chick‐rearing Little Owls Athene noctua to variation in habitat diversity in an agricultural landscape. We equipped females with GPS loggers and received adequate range‐use data for 19 individuals (6063–14 439 locations per bird). In habitats dominated by homogeneous cropland habitats, home‐ranges were over 12 ha in size, whereas in highly diverse habitats they were below 2 ha. Large home‐ranges were associated with increased flight activity (117% of that of birds in small home‐ranges) and distances travelled per night (152%), increased duration of foraging trips (169%) covering larger distances (246%), and reduced nest visiting rates (81%). The study therefore provides strong correlative evidence that Little Owls breeding in monotonous farmland habitats expend more time and energy for a lower benefit in terms of feeding rates than do birds in more heterogeneous landscapes. As nestling food supply is the main determinant of chick survival, these results suggest a strong impact of farmland characteristics on local demographic rates. We suggest that preserving and creating islands of high habitat diversity within uniform open agricultural landscapes should be a key target in the conservation of Little Owl populations.  相似文献   

3.
Long‐term dietary monitoring of seabirds can be used to relate population fluctuations to at‐sea events. Stomach flushing is a conventional dietary monitoring technique, but has a number of disadvantages. Stable isotope analysis (SIA) is a less invasive method that provides unbiased dietary information over a longer period. We evaluated stable isotope analysis as a potential tool for monitoring long‐term little penguin Eudyptula minor diet. We determined diet composition during the chick feeding stage using stomach flushing and SIA at three separate colonies, using spatial variation in diet as a surrogate for potential temporal variation. Bayesian isotopic mixing models were generated for blood and feathers to evaluate their ability to discriminate broad‐scale (fish, squid, crustaceans) and fine‐scale (individual prey species) diet composition. Differences in stable carbon and nitrogen isotope ratios were found between colonies: broad‐scale isotopic mixing models predicted different proportional contributions of broad taxa (fish, cephalopod, crustacean) to diet than was indicated by stomach samples, reflecting the bias incurred by one‐off stomach contents analysis. Fine‐scale isotopic mixing models predicted proportional contributions of prey items with less certainty. Blood isotopic mixing models had narrower confidence intervals than models for feathers, but trends in δ15N for feathers mirrored those for blood. Our results suggest that relying on stomach contents analysis to detect shifts in prey consumption in little penguins could be very misleading, resulting in a less‐than‐complete idea of total prey consumption. SIA of little penguin tissues could be used to monitor dietary shifts across dissimilar taxa that may affect population numbers, but would fail to detect shifts between fish species.  相似文献   

4.
To investigate the role of sea ice cover on penguin populations we used principal component analysis to compare population variables of Adélie (Pygoscelis adeliae) and chinstrap (Pygoscelis antarctica) penguins breeding on Signy Island, South Orkney Islands with local (from direct observations) and regional (from remote sensing data) sea ice variables. Throughout the study period, the Adélie penguin population size remained stable, whereas that of chinstrap penguins decreased slightly. For neither species were there significant relationships between population size and breeding success, except for an apparent inverse density-dependent relationship between the number of Adélie breeding pairs and the number of eggs hatching. For both species, no general relationship was found between either population size or breeding success and the local sea ice conditions. However, the regional sea ice extent at a particular time prior to the start of the breeding season was related to the number of birds that arrived to breed. For both species, this period occurred before the sea ice reached its maximum extent and was slightly earlier for Adélie than for chinstrap penguins. These results suggest that sea ice conditions outside the breeding season may play an important role in penguin population processes.  相似文献   

5.
The rockhopper penguin (Eudyptes chrysocome) is a conspicuous apex marine predator that has experienced marked population declines throughout most of its circumpolar breeding distribution. The cause(s) for the declines remain elusive, but the relatively large spatio‐temporal scale over which population decreases have occurred implies that ecosystem‐scale, at‐sea factors are likely to be involved. We employ stable isotope analyses of carbon (13C/12C, expressed as δ13C) and nitrogen (15N/14N, δ15N) in time‐series of rockhopper penguin feather samples, dating back to 1861, in order to reconstruct the species' ecological history. Specifically, we examine whether rockhopper penguin population decline has been associated with a shift towards lower primary productivity in the ecosystem in which they feed, or with a shift to a diet of lower trophic status and lower quality, and we use long‐term temperature records to evaluate whether shifts in isotope ratios are associated with annual variations in sea surface temperature. Having controlled temporally for the Suess Effect and for increases in CO2 concentrations in seawater, we found that overall, δ13C signatures decreased significantly over time in rockhopper penguins from seven breeding sites, supporting the hypothesis that decreases in primary productivity, and hence, carrying capacity, for which δ13C signature is a proxy, have been associated with the decline of penguin populations. There was some evidence of a long‐term decline in δ15N at some sites, and strong evidence that δ15N signatures were negatively related to sea surface temperatures across sites, indicative of a shift in diet to prey of lower trophic status over time and in warm years. However, a site‐by‐site analysis revealed divergent isotopic trends among sites: five of seven sites exhibited significant temporal or temperature‐related trends in isotope signatures. This study highlights the utility of stable isotope analyses when applied over relatively long timescales to apex predators.  相似文献   

6.
Adélie penguins Pygoscelis adeliae in Enderby Land, Antarctica feed mainly on Euphausia superba during the chick rearing season in shelf areas where fast sea-ice remains: indicating that E. superba is abundant under the fast sea-ice in these areas. The shelf areas in Enderby Land, therefore, are unique since the previous studies of Adélie penguin diet in Ross Sea, Adélie Land and Prydz Bay show that E. crystallorophias is the most abundant krill species in shelf areas in general.  相似文献   

7.
Aim We examined patterns of covariation among piscivorous and planktivorous seabirds breeding at St Lazaria Island in order to evaluate their responses to interannual changes in sea surface temperature, a variable that affects marine food webs. In addition, we evaluated seabird population trends for responses to decadal‐scale changes in the marine ecosystem. Location St Lazaria Island, Sitka Sound, Alaska. Methods Established seabird monitoring protocols for the Alaska Maritime National Wildlife Refuge were followed in estimating population trends, the timing of nesting events and the reproductive success of eight species of seabirds between 1994 and 2006. Results  Population increases were noted for storm‐petrels (Oceanodroma furcata and O. leucorhoa), rhinoceros auklets (Cerorhinca monocerata) and glaucous‐winged gulls (Larus glaucescens). We found no population trend for pelagic cormorants (Phalacrocorax pelagicus), but it appeared that populations of common (Uria aalge) and thick‐billed (U. lomvia) murres and of tufted puffins (Fratercula cirrhata) declined. We detected no linear trends in either breeding chronology or reproductive success over the study period for any seabird. All species of piscivorous seabirds apparently responded similarly to environmental cues as there was a positive covariation among species in the timing of nesting. Piscivores tended to nest earlier, and most species had higher rates of reproductive success in years with relatively warm spring sea temperatures. In contrast, planktivorous Leach’s storm‐petrels (O. leucorhoa) tended to nest earlier when spring and summer sea temperatures were relatively cool. Clearly, seabirds at St Lazaria were responding to interannual changes in sea temperatures near the breeding colony, probably as a result of effects on the food webs. Main conclusions Every seabird species we monitored at St Lazaria exhibited significant population trends between 1994 and 2006. For most species there appeared to be a relationship between both the timing of nesting and reproductive rates and spring or summer sea surface temperatures. Responses at both decadal (populations) and interannual (timing and reproductive success) scales make seabirds useful candidates for helping to monitor change in the marine environment.  相似文献   

8.
Climate warming and associated sea ice reductions in Antarctica have modified habitat conditions for some species. These include the congeneric Adélie, chinstrap and gentoo penguins, which now demonstrate remarkable population responses to regional warming. However, inconsistencies in the direction of population changes between species at different study sites complicate the understanding of causal processes. Here, we show that at the South Orkney Islands where the three species breed sympatrically, the less ice‐adapted gentoo penguins increased significantly in numbers over the last 26 years, whereas chinstrap and Adélie penguins both declined. These trends occurred in parallel with regional long‐term warming and significant reduction in sea ice extent. Periodical warm events, with teleconnections to the tropical Pacific, caused cycles in sea ice leading to reduced prey biomass, and simultaneous interannual population decreases in the three penguin species. With the loss of sea ice, Adélie penguins were less buffered against the environment, their numbers fluctuated greatly and their population response was strong and linear. Chinstrap penguins, considered to be better adapted to ice‐free conditions, were affected by discrete events of locally increased ice cover, but showed less variable, nonlinear responses to sea ice loss. Gentoo penguins were temporarily affected by negative anomalies in regional sea ice, but persistent sea ice reductions were likely to increase their available niche, which is likely to be substantially segregated from that of their more abundant congeners. Thus, the regional consequences of global climate perturbations on the sea ice phenology affect the marine ecosystem, with repercussions for penguin food supply and competition for resources. Ultimately, variability in penguin populations with warming reflects the local balance between penguin adaptation to ice conditions and trophic‐mediated changes cascading from global climate forcing.  相似文献   

9.
Aim Animal monitoring programmes have allowed analyses of population trends, most of which now comment on the possible effect of global climate change. However, the relationship between the interspecific variation in population trends and species traits, such as habitat preferences, niche breadth or distribution patterns, has received little attention, in spite of its usefulness in the construction of ecological generalizations. The objectives of this study were: (1) to determine whether there are characteristics shared among species with upwards or downwards trends, and (2) to assess whether population changes agree with what could be expected under global warming (a decrease in species typical of cooler environments). Location The Spanish part of the Iberian Peninsula (c. 500,000 km2) in the south‐western part of the Mediterranean Basin. Methods We modelled recent breeding population changes (1996–2004), in areas without apparent land use changes, for 57 common passerine birds with species‐specific ecological and distributional patterns as explanatory variables. Results One‐half of these species have shown a generalized pattern towards the increase of their populations, while only one‐tenth showed a significant decrease. One half (54%) of the interspecific variability in yearly population trends is explained considering species‐specific traits. Species showing more marked increases preferred wooded habitats, were habitat generalists and occupied warmer and wetter areas, while moderate decreases were found for open country habitats in drier areas. Main conclusions The coherent pattern in population trends we found disagrees with the proposed detrimental effect of global warming on bird populations of western Europe, which is expected to be more intense in bird species inhabiting cooler areas and habitats. Such a pattern suggests that factors other than the increase in temperature may be brought to discussions on global change as relevant components to explain recent changes in biodiversity.  相似文献   

10.
Seaweed beds play a key role in providing essential habitats and energy to coastal areas, with enhancements in productivity and biodiversity and benefits to human societies. However, the spatial extent of seaweed beds around Japan has decreased due to coastal reclamation, water quality changes, rising water temperatures, and heavy grazing by herbivores. Using monthly mean sea surface temperature (SST) data from 1960 to 2099 and SST‐based indices, we quantitatively evaluated the effects of warming seawater on the spatial extent of suitable versus unsuitable habitats for temperate seaweed Ecklonia cava, which is predominantly found in southern Japanese waters. SST data were generated using the most recent multiple climate projection models and emission scenarios (the Representative Concentration Pathways or RCPs) used in the Coupled Model Intercomparison Project phase 5 (CMIP5). In addition, grazing by Siganus fuscescens, an herbivorous fish, was evaluated under the four RCP simulations. Our results suggest that continued warming may drive a poleward shift in the distribution of E. cava, with large differences depending on the climate scenario. For the lowest emission scenario (RCP2.6), most existing E. cava populations would not be impacted by seawater warming directly but would be adversely affected by intensified year‐round grazing. For the highest emission scenario (RCP8.5), previously suitable habitats throughout coastal Japan would become untenable for E. cava by the 2090s, due to both high‐temperature stress and intensified grazing. Our projections highlight the importance of not only mitigating regional warming due to climate change, but also protecting E. cava from herbivores to conserve suitable habitats on the Japanese coast.  相似文献   

11.
Early‐life demographic traits are poorly known, impeding our understanding of population processes and sensitivity to climate change. Survival of immature individuals is a critical component of population dynamics and recruitment in particular. However, obtaining reliable estimates of juvenile survival (i.e., from independence to first year) remains challenging, as immatures are often difficult to observe and to monitor individually in the field. This is particularly acute for seabirds, in which juveniles stay at sea and remain undetectable for several years. In this work, we developed a Bayesian integrated population model to estimate the juvenile survival of emperor penguins (Aptenodytes forsteri), and other demographic parameters including adult survival and fecundity of the species. Using this statistical method, we simultaneously analyzed capture–recapture data of adults, the annual number of breeding females, and the number of fledglings of emperor penguins collected at Dumont d'Urville, Antarctica, for the period 1971–1998. We also assessed how climate covariates known to affect the species foraging habitats and prey [southern annular mode (SAM), sea ice concentration (SIC)] affect juvenile survival. Our analyses revealed that there was a strong evidence for the positive effect of SAM during the rearing period (SAMR) on juvenile survival. Our findings suggest that this large‐scale climate index affects juvenile emperor penguins body condition and survival through its influence on wind patterns, fast ice extent, and distance to open water. Estimating the influence of environmental covariates on juvenile survival is of major importance to understand the impacts of climate variability and change on the population dynamics of emperor penguins and seabirds in general and to make robust predictions on the impact of climate change on marine predators.  相似文献   

12.
气候变化直接影响物种赖以生存的栖息地环境条件,进而影响物种的分布、数量和存活率。基于优化后最大熵(MaxEnt)模型预测气候变化下黄腹角雉(Tragopan caboti)过去、当前、未来时期的潜在栖息地格局。结果表明,降水量、温度、海拔是栖息地的主要影响因子。当前时期适宜栖息地面积较过去时期下降24.69%;未来2041—2060年间,共享社会经济路径(SSP)3-7.0与SSP5-8.5情景下黄腹角雉适宜栖息地面积较当前时期分别下降55.19%、58.10%。浙江、江西和福建是当前以及未来黄腹角雉核心适宜栖息地,适宜栖息地面积呈现下降的趋势,并往高纬度区域移动。  相似文献   

13.
Overall Adélie penguin population size in Pointe Géologie Archipelago increased between 1984 and 2003 at a rate of 1.77% per year, and averaged 33,726±5,867 pairs. As predicted by the optimum model proposed by Smith et al. (Bioscience 49:393–404, 1999). Adélie penguin population size increased when sea ice extent and concentration (SIE and SIC) decreased six years earlier, indicating that the conditions around reproduction or first years at sea, were determinant. The breeding success averaged 85.2±35.45% and was not related to environmental variables. Adult survival probability varied between years from 0.64 to 0.82. Southern oscillation index (SOI) had a strong negative effect on adult annual survival. Adult survival of Adélie penguins increased during warmer events, especially during winter and spring at the beginning of reproduction. Therefore, we speculate that the rapid decreases in 1988–1991 and 1996 of the breeding population size were related to a decrease in adult mortality. However, adult survival varied little, and could not explain the strong increasing population trend. The sea ice conditions during breeding or during the first year at sea appeared determinant and influenced the population dynamics through cohort effects, probably related to the availability of productive feeding habitats.  相似文献   

14.
国家二级保护野生植物水菜花(Ottelia cordata),喜生于清洁的水环境中,对环境变化极为敏感,是检验湿地环境及气候变化的关键指示物种之一,在我国仅零星分布于海南北部的火山熔岩湿地区,生存状况不容乐观。研究水菜花种群潜在生境选择及其空间格局演变,有利于加强濒危物种保护保育及湿地生态系统修复、管理。该研究基于GIS平台和MaxEnt模型,结合气候、地形和土壤因子,探究水菜花种群环境限制因子及其在气候变化背景下潜在适宜生境的演变格局。结果表明,水菜花种群对温差与降水量变化敏感,等温性、最冷季度降水量、土壤类型和年均降水量对水菜花种群分布影响显著;全新世中期-当前-2070年气候变化背景下,水菜花适宜生境面积先减小后增大,分布重心呈西南-东北-西南转移格局;未来气候情景下,水菜花种群高度和中度适宜生境缩减,低适宜生境增加,南部地区将出现新增适宜生境,东北、西北及西南部适宜生境将发生消减。该研究从气候环境角度论证了水菜花种群的潜在生境选择及空间变化特征,可为濒危物种保护保育、湿地管理及其生物多样性维护工作提供参考和指导。  相似文献   

15.
16.
Relating the effects of foraging niche variation to reproductive dynamics is critical to understand species response to environmental change. We examined foraging niche variations of the slender‐billed gull (Chroicocephalus genei), a nomadic colonial waterbird species during its range expansion along the French Mediterranean coast over a 16‐year period (1998–2013). We investigated whether range expansion was associated with a change in chick diet, breeding success, and chicks body condition. We also examined whether breeding success and chicks body condition were explained by diet and colonial characteristics (number of pairs, laying phenology, habitat, and locality). Diet was characterized using dual‐stable isotopic proxies (δ13C and δ15N) of feather keratin from 331 individuals subsampled from a total of 4,154 chicks ringed and measured at 18 different colonies. δ13C decreased and δ15N increased significantly during range expansion suggesting that chicks were fed from preys of increasing trophic level found in the less salty habitat colonized by the end of the study period. Niche shift occurred without significant change of niche width which did not vary among periods, habitats, or localities either. Breeding success and chick body condition showed no consistent trends over years. Breeding success tended to increase with decreasing δ13C at the colony level while there was no relationship between stable isotope signatures and chick body condition. Overall, our results suggest that even if range expansion is associated with foraging niche shift toward the colonization of less salty and more brackish habitats, the shift had marginal effect on the breeding parameters of the Slender‐billed gull. Niche width appears as an asset of this species, which likely explains its ability to rapidly colonize new locations.  相似文献   

17.
Energy and time allocation differs between incubation and chick‐rearing periods, which may lead to an adjustment in the foraging behaviour of parent birds. Here, we investigated the foraging behaviour of a small alcid, the little auk Alle alle during incubation and compared it with the chick‐rearing period in West Spitsbergen, using the miniature GPS (in Hornsund) and temperature loggers (in Magdalenefjorden). GPS‐tracking of 11 individuals revealed that during incubation little auks foraged 8–55 (median 46) km from the colony covering 19–239 (median 120) km during one foraging trip. Distance from the colony to foraging areas was similar during incubation and chick‐rearing period. During incubation 89% of foraging positions were located in the zone over shallower parts of the shelf (isobaths up to 200–300 m) with sea surface temperature below 2.5°C. Those environmental conditions are preferred by Arctic zooplankton community. Thus, little auks in the Hornsund area restrict their foraging (both during the incubation and chick‐rearing period) to the area under influence of cold, Arctic‐origin water masses where its most preferred prey, copepod Calanus glacialis is most abundant. The temperature logger data (from 4 individuals) indicate that in contrast to the chick‐rearing period, when parent birds alternated short and long trips, during the incubation they performed only long trips. Adopting such a flexible foraging strategy allows little auks to alter their foraging strategy to meet different energy and time demands during the two main stages of the breeding.  相似文献   

18.
Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator–prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy‐deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate‐only model shows that only 11.64% (17,190 km2) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km2 (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate‐only model. It is predicted that future climate may alter the predator–prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards – a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.  相似文献   

19.
Aim We test the prediction that hybrid zones between warm‐ and cold‐adapted species will move towards the territory formerly occupied by the cold‐adapted species in response to a warming climate. We use multiple tests of this prediction to distinguish amongst potential mechanistic hypotheses of responses to climate change. Location We sampled 97 locations on the Atlantic coast of Spain and France and the English Channel that span three hybrid zones formed between two species of marine mussels (Mytilus galloprovincialis and M. edulis). Methods Mussels were sampled in 2005–07 and analysed at a nuclear gene (Glu‐5′) that is diagnostically differentiated between the subject species. Results were compared to those of studies made in the same region over the past two decades. Historical change in sea surface temperature (SST) was analysed using National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation Daily SST. Species distribution models (random forest and maximum entropy) of the current distribution of mussels were constructed and validated by hindcasting the historical distributions of these species. Validated models were used in combination with forecasts of SST to predict changes in mussel distribution to 2050 and 2100. Results We show that over the past two decades two of the hybrid zones in France have not changed in either position or shape. The third hybrid zone, however, has shifted in the predicted direction, c. 100 km eastward into the warming English Channel. Species distribution modelling strongly implicates changes in winter cold SST as driving this change in the position of one of the hybrid zones. Forecasts of future SST indicate that rapid changes in distribution will occur over the next century. Main conclusions Hybrid zones can be used to conduct repeated tests of ecological responses to climate change and can be valuable in sorting among prospective mechanistic hypotheses that underlie that change. Winter temperatures, but not seasonal high temperature, appear to control the distribution of both species. Species distribution modelling indicates that the collapse of these hybrid zones is imminent, with the rapid expansion of the subtropical species in response to continuing SST warming.  相似文献   

20.
Increasing goose population sizes gives rise to conflicts with human socioeconomic interests and in some circumstances conservation interests. Grazing by high abundances of geese in grasslands is postulated to lead to a very short and homogeneous sward height negatively affecting cover for breeding meadow birds and impacting survival of nests and chicks. We studied the effects of spring grazing barnacle geese Branta leucopsis and brent geese Branta bernicla on occupancy of extensively farmed freshwater grasslands by nesting and brood‐rearing waders on the island Mandø in the Danish Wadden Sea. We hypothesized that goose grazing would lead to a shorter grass sward, negatively affecting the field occupancy by territorial/nesting and chick‐rearing waders, particularly species preferring taller vegetation. Goose grazing led to a short grass sward (<5 cm height) over most of the island. To achieve a variation in sward height, we kept geese off certain fields using laser light. We analyzed effects of field size, sward height, mosaic structure of the vegetation, proximity to shrub as cover for potential predators, and elevation above ground water level as a measure of wetness on field occupancy by nesting and chick‐rearing waders. The analysis indicated that the most important factor explaining field occupancy by nesting redshank Tringa totanus, black‐tailed godwit Limosa limosa, oystercatcher Haematopus ostralegus and lapwing Vanellus vanellus as well as by chick‐rearing black‐tailed godwit and lapwing was short vegetation height. Distance to shrub cover and elevation were less important. Hence, despite very intensive goose grazing, we could not detect any negative effect on the field occupancy by nesting nor chick‐rearing waders, including redshank and black‐tailed godwit, which are known to favor longer vegetation to conceal their nests and hide their chicks. Possible negative effects may be buffered by mosaic structures in fields and proximity to taller vegetation along fences and ditches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号