首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate warming and associated sea ice reductions in Antarctica have modified habitat conditions for some species. These include the congeneric Adélie, chinstrap and gentoo penguins, which now demonstrate remarkable population responses to regional warming. However, inconsistencies in the direction of population changes between species at different study sites complicate the understanding of causal processes. Here, we show that at the South Orkney Islands where the three species breed sympatrically, the less ice‐adapted gentoo penguins increased significantly in numbers over the last 26 years, whereas chinstrap and Adélie penguins both declined. These trends occurred in parallel with regional long‐term warming and significant reduction in sea ice extent. Periodical warm events, with teleconnections to the tropical Pacific, caused cycles in sea ice leading to reduced prey biomass, and simultaneous interannual population decreases in the three penguin species. With the loss of sea ice, Adélie penguins were less buffered against the environment, their numbers fluctuated greatly and their population response was strong and linear. Chinstrap penguins, considered to be better adapted to ice‐free conditions, were affected by discrete events of locally increased ice cover, but showed less variable, nonlinear responses to sea ice loss. Gentoo penguins were temporarily affected by negative anomalies in regional sea ice, but persistent sea ice reductions were likely to increase their available niche, which is likely to be substantially segregated from that of their more abundant congeners. Thus, the regional consequences of global climate perturbations on the sea ice phenology affect the marine ecosystem, with repercussions for penguin food supply and competition for resources. Ultimately, variability in penguin populations with warming reflects the local balance between penguin adaptation to ice conditions and trophic‐mediated changes cascading from global climate forcing.  相似文献   

2.
Understanding the scales at which environmental variability affects populations is critical for projecting population dynamics and species distributions in rapidly changing environments. Here we used a multilevel Bayesian analysis of range‐wide survey data for Adélie penguins to characterize multidecadal and annual effects of sea ice on population growth. We found that mean sea ice concentration at breeding colonies (i.e., “prevailing” environmental conditions) had robust nonlinear effects on multidecadal population trends and explained over 85% of the variance in mean population growth rates among sites. In contrast, despite considerable year‐to‐year fluctuations in abundance at most breeding colonies, annual sea ice fluctuations often explained less than 10% of the temporal variance in population growth rates. Our study provides an understanding of the spatially and temporally dynamic environmental factors that define the range limits of Adélie penguins, further establishing this iconic marine predator as a true sea ice obligate and providing a firm basis for projection under scenarios of future climate change. Yet, given the weak effects of annual sea ice relative to the large unexplained variance in year‐to‐year growth rates, the ability to generate useful short‐term forecasts of Adélie penguin breeding abundance will be extremely limited. Our approach provides a powerful framework for linking short‐ and longer term population processes to environmental conditions that can be applied to any species, facilitating a richer understanding of ecological predictability and sensitivity to global change.  相似文献   

3.
To investigate the role of sea ice cover on penguin populations we used principal component analysis to compare population variables of Adélie (Pygoscelis adeliae) and chinstrap (Pygoscelis antarctica) penguins breeding on Signy Island, South Orkney Islands with local (from direct observations) and regional (from remote sensing data) sea ice variables. Throughout the study period, the Adélie penguin population size remained stable, whereas that of chinstrap penguins decreased slightly. For neither species were there significant relationships between population size and breeding success, except for an apparent inverse density-dependent relationship between the number of Adélie breeding pairs and the number of eggs hatching. For both species, no general relationship was found between either population size or breeding success and the local sea ice conditions. However, the regional sea ice extent at a particular time prior to the start of the breeding season was related to the number of birds that arrived to breed. For both species, this period occurred before the sea ice reached its maximum extent and was slightly earlier for Adélie than for chinstrap penguins. These results suggest that sea ice conditions outside the breeding season may play an important role in penguin population processes.  相似文献   

4.
Penguins are adapted to live in extreme environments, but they can be highly sensitive to climate change, which disrupts penguin life history strategies when it alters the weather, oceanography and critical habitats. For example, in the southwest Atlantic, the distributional range of the ice‐obligate emperor and Adélie penguins has shifted poleward and contracted, while the ice‐intolerant gentoo and chinstrap penguins have expanded their range southward. In the Southern Ocean, the El Niño‐Southern Oscillation and the Southern Annular Mode are the main modes of climate variability that drive changes in the marine ecosystem, ultimately affecting penguins. The interaction between these modes is complex and changes over time, so that penguin responses to climate change are expected to vary accordingly, complicating our understanding of their future population processes. Penguins have long life spans, which slow microevolution, and which is unlikely to increase their tolerance to rapid warming. Therefore, in order that penguins may continue to exploit their transformed ecological niche and maintain their current distributional ranges, they must possess adequate phenotypic plasticity. However, past species‐specific adaptations also constrain potential changes in phenology, and are unlikely to be adaptive for altered climatic conditions. Thus, the paleoecological record suggests that penguins are more likely to respond by dispersal rather than adaptation. Ecosystem changes are potentially most important at the borders of current geographic distributions, where penguins operate at the limits of their tolerance; species with low adaptability, particularly the ice‐obligates, may therefore be more affected by their need to disperse in response to climate and may struggle to colonize new habitats. While future sea‐ice contraction around Antarctica is likely to continue affecting the ice‐obligate penguins, understanding the responses of the ice‐intolerant penguins also depends on changes in climate mode periodicities and interactions, which to date remain difficult to reproduce in general circulation models.  相似文献   

5.
Major population crashes due to natural or human‐induced environmental changes may be followed by recoveries. There is a growing interest in the factors governing recovery, in hopes that they might guide population conservation and management, as well as population recovery following a re‐introduction program. The emperor penguin Aptenodytes forsteri population in Terre Adélie, Antarctica, declined by 50% during a regime shift in the mid‐1970s, when abrupt changes in climate and ocean environment regimes affected the entire Southern Ocean ecosystem. Since then the population has remained stable and has not recovered. To determine the factors limiting recovery, we examined the consequences of changes in survival and breeding success after the regime shift. Adult survival recovered to its pre‐regime shift level, but the mean breeding success declined and the variance in breeding success increased after the regime shift. Using stochastic matrix population models, we found that if the distribution of breeding success observed prior to the regime shift had been retained, the emperor penguin population would have recovered, with a median time to recovery of 36 years. The observed distribution of breeding success after the regime shift makes recovery very unlikely. This indicates that the pattern of breeding success is sufficient to have prevented emperor penguin population recovery. The population trajectory predicted on the basis of breeding success agrees with the observed trajectory. This suggests that the net effect of any facors other than breeding success must be small. We found that the probability of recovery and the time to recovery depend on both the mean and variance of breeding success. Increased variance in breeding success increases the probability of recovery when mean success is low, but has the opposite effect when the mean is high. This study shows the important role of breeding success in determining population recovery for a long‐lived species and demonstrates that demographic mechanisms causing population crash can be different from those preventing population recovery.  相似文献   

6.
Antarctic seabird populations have been much studied over the last decades as bioindicators of the nature of variability in the Southern Ocean marine ecosystem, and most attention has been focused on the role of food supply and the extent of sea ice. In addition, the rapid spread of tourism and the activities of researchers since the early 1960s have raised questions related to their real and potential impact on bird populations. Our data sets start in 1952 for several species of Antarctic seabirds and this study documents the trends over a 14-year period (1985–1999) in seven species breeding on Pointe Géologie archipelago (Terre Adélie, Antarctica). This is the first study where the direct impact of destruction of breeding sites (for building of an airstrip) is examined and where such long-term populations trends have been assessed in such a number of Antarctic species at one site. Trends from 1985 show that for the whole archipelago and when excluding islands destroyed, Adélie penguins and south polar skuas were the only species to show a significant increase (>3.5% annual change). The others species showed opposite trends, three increasing slightly (southern fulmars +0.4%, cape petrels +2.3%, snow petrels +0.9%) and two decreasing (emperor penguin −0.9%, southern giant petrel −3.9%). Three species particularly affected by the destruction of their breeding habitat (Adélie penguin, cape petrel, snow petrel) showed the capability to restore their populations. The availability of food and nesting sites is discussed in relation to environmental change. Species feeding on krill (Adélie penguins and cape petrels) increased more than other species; however, decrease of ice cover can increase availability of nesting sites. The importance of long-term studies is shown when assessing the role of human activities in Antarctica compared to larger-scale changes. Accepted: 18 September 2000  相似文献   

7.
Seabird life history is typified by low fecundity, high adult survival rates, and relatively long lives. Such traits act as buffers, enabling persistence of populations under variable environmental conditions. Numerous studies, however, have suggested strong sensitivity of seabirds to environmental variability. In the Antarctic Peninsula region, for example, Adélie penguin (Pygoscelis adeliae) populations have declined during the last three decades, attributed largely to rapid changes in environmental conditions and food availability. We use 30 years of mark-recapture data from known-age individuals in the South Shetland Islands and capture-mark-recapture models to estimate survival rates with respect to such environmental variation. We investigated specifically whether negative trends in survival rates were evident and whether indices of global, regional, and local environmental conditions considered important for Adélie penguin survival explained the variability in survival rates. Overall, negative trends in juvenile survival were evident, but adult survival rates exhibited high interannual variability. Indices of sea ice extent had the strongest correlations with survival rates, particularly Weddell Sea ice extent during spring among adults (r = 0.62) and during winter for juveniles (r = 0.46). An analysis of deviance, however, suggested that single environmental covariates explained <30 % of the observed variation in the full mark-recapture models. Despite positive effects of sea ice extent on survival rates of Adélie penguins, limited explanatory power of several environmental conditions previously identified as important for Adélie penguin survival underscores the difficulty of predicting future population responses in this region of rapid environmental change.  相似文献   

8.
Overall Adélie penguin population size in Pointe Géologie Archipelago increased between 1984 and 2003 at a rate of 1.77% per year, and averaged 33,726±5,867 pairs. As predicted by the optimum model proposed by Smith et al. (Bioscience 49:393–404, 1999). Adélie penguin population size increased when sea ice extent and concentration (SIE and SIC) decreased six years earlier, indicating that the conditions around reproduction or first years at sea, were determinant. The breeding success averaged 85.2±35.45% and was not related to environmental variables. Adult survival probability varied between years from 0.64 to 0.82. Southern oscillation index (SOI) had a strong negative effect on adult annual survival. Adult survival of Adélie penguins increased during warmer events, especially during winter and spring at the beginning of reproduction. Therefore, we speculate that the rapid decreases in 1988–1991 and 1996 of the breeding population size were related to a decrease in adult mortality. However, adult survival varied little, and could not explain the strong increasing population trend. The sea ice conditions during breeding or during the first year at sea appeared determinant and influenced the population dynamics through cohort effects, probably related to the availability of productive feeding habitats.  相似文献   

9.
The relationship between population structure and demographic history is critical to understanding microevolution and for predicting the resilience of species to environmental change. Using mitochondrial DNA from extant colonies and radiocarbon‐dated subfossils, we present the first microevolutionary analysis of emperor penguins (Aptenodytes forsteri) and show their population trends throughout the last glacial maximum (LGM, 19.5–16 kya) and during the subsequent period of warming and sea ice retreat. We found evidence for three mitochondrial clades within emperor penguins, suggesting that they were isolated within three glacial refugia during the LGM. One of these clades has remained largely isolated within the Ross Sea, while the two other clades have intermixed around the coast of Antarctica from Adélie Land to the Weddell Sea. The differentiation of the Ross Sea population has been preserved despite rapid population growth and opportunities for migration. Low effective population sizes during the LGM, followed by a rapid expansion around the beginning of the Holocene, suggest that an optimum set of sea ice conditions exist for emperor penguins, corresponding to available foraging area.  相似文献   

10.
Despite many studies on Adélie penguin breeding phenology, understanding the drivers of clutch initiation dates (CIDs, egg 1 lay date) is limited or lacks consensus. Here, we investigated Adélie penguin CIDs over 25 years (1991–2016) on two neighboring islands, Torgersen and Humble (<1 km apart), in a rapidly warming region near Palmer Station, Antarctica. We found that sea ice was the primary large‐scale driver of CIDs and precipitation was a secondary small‐scale driver that fine‐tunes CID to island‐specific nesting habitat geomorphology. In general, CIDs were earlier (later) when the spring sea ice retreat was earlier (later) and when the preceding annual ice season was shorter (longer). Island‐specific effects related to precipitation and island geomorphology caused greater snow accumulation and delayed CIDs by ~2 days on Torgersen compared to Humble Island. When CIDs on the islands were similar, conditions were mild with less snow across breeding sites. At Torgersen Island, the negative relationship between CID and breeding success highlights detrimental effects of delayed breeding and/or snow on penguin fitness. Past phenological studies reported a relationship between air temperature and CID, assumed to be related to precipitation, but we found air temperature was more highly correlated to sea ice, revealing a misinterpretation of temperature effects. Finally, contrasting trends in CIDs based on temporal shifts in regional sea ice patterns revealed trends toward earlier CIDs (4–6 day advance) from 1979 to 2009 as the annual ice season shortened, and later CIDs (7–10 day delay) from 2010 to 2016 as the annual ice season lengthened. Adélie penguins tracked environmental conditions with flexible breeding phenology, but their life history remains vulnerable to subpolar weather conditions that can delay CIDs and decrease breeding success, especially on landscapes where geomorphology facilitates snow accumulation.  相似文献   

11.
Emmerson L  Southwell C 《Oecologia》2011,167(4):951-965
The driving factors of survival, a key demographic process, have been particularly challenging to study, especially for winter migratory species such as the Adélie penguin (Pygoscelis adeliae). While winter environmental conditions clearly influence Antarctic seabird survival, it has been unclear to which environmental features they are most likely to respond. Here, we examine the influence of environmental fluctuations, broad climatic conditions and the success of the breeding season prior to winter on annual survival of an Adélie penguin population using mark–recapture models based on penguin tag and resight data over a 16-year period. This analysis required an extension to the basic Cormack–Jolly–Seber model by incorporating age structure in recapture and survival sub-models. By including model covariates, we show that survival of older penguins is primarily related to the amount and concentration of ice present in their winter foraging grounds. In contrast, fledgling and yearling survival depended on other factors in addition to the physical marine environment and outcomes of the previous breeding season, but we were unable to determine what these were. The relationship between sea-ice and survival differed with penguin age: extensive ice during the return journey to breeding colonies was detrimental to survival for the younger penguins, whereas either too little or too much ice (between 15 and 80% cover) in the winter foraging grounds was detrimental for adults. Our results demonstrate that predictions of Adélie penguin survival can be improved by taking into account penguin age, prior breeding conditions and environmental features.  相似文献   

12.
The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher‐order predators. Here, we compare the long‐term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; (i) the availability of ice‐free ground for breeding and (ii) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long‐term data on species’ responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds proximate to breeding locations, as well as the potential role of polynyas as future Southern Ocean refugia.  相似文献   

13.
Petermann Island (65°10′S, 64°10′W), one of the Antarctic Peninsula’s most frequently visited locations, is at the epicenter of a rapid shift in which an Adélie penguin dominated fauna is becoming gentoo penguin dominated. Over the course of five seasons, the breeding productivity of Adélie and gentoo penguins breeding at Petermann Island were monitored to identify drivers of this rapid community change. The impact of tourist visitation on breeding success was also investigated. Consistent with larger trends in this region, the Adélie penguin population decreased by 29% and the gentoo penguin population increased by 27% between the 2003/2004 and 2007/2008 seasons. Reproductive success among Adélie penguins ranged from 1.09 to 1.32 crèched chicks/nest, which was higher than or comparable to other sites and is an unlikely explanation for the precipitous decline of Adélie penguins at Petermann Island. Whereas gentoo penguin reproductive success was lowest in colonies frequently visited by tourists, Adélie penguin colonies frequently visited by tourists had higher reproductive success than those visited only occasionally. These results are placed in the context of other studies on reproductive success and the impact of tourist visitation on breeding colonies of Adélie and gentoo penguins.  相似文献   

14.
We compared the heart morphology of the small, deep-diving northern rockhopper penguin to the hearts of small, shallow-diving and large, deep-diving penguin species. The rockhopper penguin had a heart larger than expected for its body mass, and its heart weight/body weight was significantly greater than in the larger Adélie penguin. We found the rockhopper's right ventricle weight/heart weight to be significantly greater than this relationship in both the larger chinstrap and Adélie penguins. The relationship of the right to left ventricular weights in the rockhopper heart is not different to that of the large, deepest-diving emperor penguin. A larger heart in the rockhopper penguin might be related to its diving behavior and ecology if it contributes to diving efficiency during foraging by increasing lung perfusion during surface recovery. This would lead to decreased surface time. Accepted: 20 May 2000  相似文献   

15.
The western Antarctica Peninsula and Scotia Sea ecosystems appear to be driven by complex links between climatic variables, primary productivity, krill and Avian predators. There are several studies reporting statistical relationships between climate, krill and Penguin population size. The Adélie (Pygoscelis adeliae), Chinstrap (P. antarctica) and Gentoo (P. papua) penguins appear to be influenced by interannual variability in sea-ice extent and krill biomass. In this paper we developed simple conceptual models to decipher the role of climate and krill fluctuations on the population dynamics of these three Pygoscelis penguin species inhabiting the Antarctic Peninsula region. Our results suggest that the relevant processes underlying the population dynamics of these penguin species at King George Island (South Shetland Islands) are intra-specific competition and the combined effects of krill abundance and sea-ice cover. Our results using population theoretical models appear to support that climate change, specifically regional warming on the western Antarctic Peninsula, represents a major driver. At our study site, penguins showed species-specific responses to climate change. While Chinstrap penguins were only influenced by krill abundance, the contrasting population trends of Adélie and Gentoo penguins appear to be better explained by the “sea-ice hypothesis”. We think that proper population dynamic modeling and theory are essential for deciphering and proposing the ecological mechanisms underlying dynamics of these penguin populations.  相似文献   

16.
Due to its high spatial resolution, broad spatial coverage, and cost-effectiveness, commercial satellite imagery is rapidly becoming a key component of biological monitoring in the Antarctic. While considerable success in surveying emperor penguins (Aptenodytes forsteri) has been facilitated by their large size and the visual simplicity of their habitat, there has been considerably less progress in mapping colonies on the Antarctic Peninsula and associated sub-Antarctic islands where smaller penguin species breed on topographically complex terrain composed of mixed substrates. Here, we demonstrate that Adélie penguin (Pygoscelis adeliae), chinstrap penguin (P. antarcticus), gentoo penguin (P. papua), and macaroni penguin (Eudyptes chrysolophus) colonies can be detected by high-resolution (2-m multispectral, 40–50-cm panchromatic) satellite imagery and that under ideal conditions, such imagery is capable of distinguishing among groups of species where they breed contiguously. To demonstrate the potential for satellite imagery to estimate penguin population abundance, we use satellite imagery of Paulet Island (63°35′S, 55°47′W) to estimate a site-wide population of 115,673 (99,222–127,203) breeding pairs of Adélie penguins.  相似文献   

17.
Ecosystems and populations are known to be influenced not only by long-term climatic trends, but also by other short-term climatic modes, such as interannual and decadal-scale variabilities. Because interactions between climatic forcing, biotic and abiotic components of ecosystems are subtle and complex, analysis of long-term series of both biological and physical factors is essential to understanding these interactions. Here, we apply a wavelet analysis simultaneously to long-term datasets on the environment and on the populations and breeding success of three Antarctic seabirds (southern fulmar, snow petrel, emperor penguin) breeding in Terre Adélie, to study the effects of climate fluctuations on Antarctic marine ecosystems. We show that over the past 40 years, populations and demographic parameters of the three species fluctuate with a periodicity of 3-5 years that was also detected in sea-ice extent and the Southern Oscillation Index. Although the major periodicity of these interannual fluctuations is not common to different species and environmental variables, their cyclic characteristics reveal a significant change since 1980. Moreover, sliding-correlation analysis highlighted the relationships between environmental variables and the demography of the three species, with important change of correlation occurring between the end of the 1970s and the beginning of the 1980s. These results suggest that a regime shift has probably occurred during this period, significantly affecting the Antarctic ecosystem, but with contrasted effects on the three species.  相似文献   

18.
Impacts of climate change on avian populations   总被引:1,自引:0,他引:1  
This review focuses on the impacts of climate change on population dynamics. I introduce the MUP (Measuring, Understanding, and Predicting) approach, which provides a general framework where an enhanced understanding of climate‐population processes, along with improved long‐term data, are merged into coherent projections of future population responses to climate change. This approach can be applied to any species, but this review illustrates its benefit using birds as examples. Birds are one of the best‐studied groups and a large number of studies have detected climate impacts on vital rates (i.e., life history traits, such as survival, maturation, or breeding, affecting changes in population size and composition) and population abundance. These studies reveal multifaceted effects of climate with direct, indirect, time‐lagged, and nonlinear effects. However, few studies integrate these effects into a climate‐dependent population model to understand the respective role of climate variables and their components (mean state, variability, extreme) on population dynamics. To quantify how populations cope with climate change impacts, I introduce a new universal variable: the ‘population robustness to climate change.’ The comparison of such robustness, along with prospective and retrospective analysis may help to identify the major climate threats and characteristics of threatened avian species. Finally, studies projecting avian population responses to future climate change predicted by IPCC‐class climate models are rare. Population projections hinge on selecting a multiclimate model ensemble at the appropriate temporal and spatial scales and integrating both radiative forcing and internal variability in climate with fully specified uncertainties in both demographic and climate processes.  相似文献   

19.
Density‐dependent regulation is an important process in spatio‐temporal population dynamics because it can alter the effects of synchronizing processes operating over large spatial scales. Most frequently, populations are regulated by density dependence when higher density leads to reduced individual fitness and population growth, but inverse density dependence can also occur when small populations are subject to higher extinction risks. We investigate whether density‐dependent regulation influences population growth for the Antarctic breeding Adélie penguin Pygoscelis adeliae. Understanding the prevalence and nature of density dependence for this species is important because it is considered a sentinel species reflecting the impacts of fisheries and environmental change over large spatial scales in the Southern Ocean, but the presence of density dependence could introduce uncertainty in this role. Using data on population growth and indices of resource availability for seven regional Adélie penguin populations located along the East Antarctic coastline, we find compelling evidence that population growth is constrained at some locations by the amount of breeding habitat available to individuals. Locations with low breeding habitat availability had reduced population growth rates, higher overall occupancy rates, and higher occupancy of steeper slopes that are sparsely occupied or avoided at other locations. Our results are consistent with evolutionary models of avian breeding habitat selection where individuals search for high‐quality nest sites to maximize fitness returns and subsequently occupy poorer habitat as population density increases. Alternate explanations invoking competition for food were not supported by the available evidence, but strong conclusions on food‐related density dependence were constrained by the paucity of food availability data over the large spatial scales of this region. Our study highlights the importance of incorporating nonconstant conditions of species–environment relationships into predictive models of species distributions and population dynamics, and provides guidance for improved monitoring of fisheries and climate change impacts in the Southern Ocean.  相似文献   

20.
The foraging distributions of 20 breeding emperor penguins were investigated at Pointe Géologie, Terre Adélie, Antarctica by using satellite telemetry in 2005 and 2006 during early and late winter, as well as during late spring and summer, corresponding to incubation, early chick-brooding, late chick-rearing and the adult pre-moult period, respectively. Dive depth records of three post-egg-laying females, two post-incubating males and four late chick-rearing adults were examined, as well as the horizontal space use by these birds. Foraging ranges of chick-provisioning penguins extended over the Antarctic shelf and were constricted by winter pack-ice. During spring ice break-up, the foraging ranges rarely exceeded the shelf slope, although seawater access was apparently almost unlimited. Winter females appeared constrained in their access to open water but used fissures in the sea ice and expanded their prey search effort by expanding the horizontal search component underwater. Birds in spring however, showed higher area-restricted-search than did birds in winter. Despite different seasonal foraging strategies, chick-rearing penguins exploited similar areas as indicated by both a high ‘Area-Restricted-Search Index’ and high ‘Catch Per Unit Effort’. During pre-moult trips, emperor penguins ranged much farther offshore than breeding birds, which argues for particularly profitable oceanic feeding areas which can be exploited when the time constraints imposed by having to return to a central place to provision the chick no longer apply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号