首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue. A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis step for the fibrinogen solution to remove citrates that inhibit polymerization. These detailed methods rely on fibrinogen concentrations determined to be optimal for embryonic and induced pluripotent stem cell culture. Other groups have further investigated fibrin scaffolds for a wide range of cell types and applications - demonstrating the versatility of this approach.  相似文献   

2.
There are many variables to be considered in studying how cells interact with 3D scaffolds used in tissue engineering. In this study we investigated the influence of the fiber diameter and interfiber spaces of 3D electrospun fiber scaffolds on the behavior of human dermal fibroblasts. Fibers of two dissimilar model materials, polystyrene and poly-L-lactic acid, with a broad range of diameters were constructed in a specifically developed 3D cell culture system. When fibroblasts were introduced to freestanding fibers, and encouraged to "walk the plank," a minimum fiber diameter of 10 microm was observed for cell adhesion and migration, irrespective of fiber material chemistry. A distance between fibers of up to 200 microm was also observed to be the maximum gap that could be bridged by cell aggregates--a behavior not seen in conventional 2D culture. This approach has identified some basic micro-architectural parameters for electrospun scaffold design and some key differences in fibroblast growth in 3D. We suggest the findings will be of value for optimizing the integration of cells in these scaffolds for skin tissue engineering.  相似文献   

3.
Cell infiltration is a critical parameter for the successful development of 3D matrices for tissue engineering. Application of electrospun nanofibers in tissue engineering has recently attracted much attention. Notwithstanding several of their advantages, small pore size and small thickness of the electrospun layer limit their application for development of 3D scaffolds. Several methods for the pore size and/or electrospun layer thickness increase have been recently developed. Nevertheless, tissue engineering still needs emerging of either novel nanofiber-enriched composites or new techniques for 3D nanofiber fabrication. Forcespinning® seems to be a promising alternative. The potential of the Forcespinning® method is illustrated in preliminary experiment with mesenchymal stem cells.  相似文献   

4.
One of the milestones in tissue engineering has been the development of 3D scaffolds that guide cells to form functional tissue. Recently, mouldless manufacturing techniques, known as solid free-form fabrication (SFF), or rapid prototyping, have been successfully used to fabricate complex scaffolds. Similarly, to achieve simultaneous addition of cells during the scaffold fabrication, novel robotic assembly and automated 3D cell encapsulation techniques are being developed. As a result of these technologies, tissue-engineered constructs can be prepared that contain a controlled spatial distribution of cells and growth factors, as well as engineered gradients of scaffold materials with a predicted microstructure. Here, we review the application, advancement and future directions of SFF techniques in the design and creation of scaffolds for use in clinically driven tissue engineering.  相似文献   

5.
Cell infiltration is a critical parameter for the successful development of 3D matrices for tissue engineering. Application of electrospun nanofibers in tissue engineering has recently attracted much attention. Notwithstanding several of their advantages, small pore size and small thickness of the electrospun layer limit their application for development of 3D scaffolds. Several methods for the pore size and/or electrospun layer thickness increase have been recently developed. Nevertheless, tissue engineering still needs emerging of either novel nanofiber-enriched composites or new techniques for 3D nanofiber fabrication. Forcespinning® seems to be a promising alternative. The potential of the Forcespinning® method is illustrated in preliminary experiment with mesenchymal stem cells.  相似文献   

6.
干细胞联合生物支架材料体外构建功能性组织与器官,成为当前组织再生研究的重要策略,而探求具有良好生物相容性的支架材料是其关键.本研究采用扫描电镜、噻唑蓝(MTT)法、荧光显微染色等方法检测小鼠诱导多能干细胞(murine induced pluripotent stem cells, miPSCs)在聚己内酯(poly ε-caprolactone, PCL)静电纺丝纳米纤维支架上的粘附、增殖等生物学特性,探究聚己内酯纳米纤维支架与miPSCs的生物相容性. 结果显示,miPSC在PCL纳米纤维支架上具有良好粘附性并呈集落样生长,其增殖能力及干性标记物(Oct4-GFP+)的表达均不亚于标准对照组;扫描电镜显示,miPSC在PCL纳米纤维支架材料上呈现出绒毛状突起的表面结构.上述结果表明,PCL纳米纤维支架可促进miPSCs的粘附、自我增殖以及干性维持,两者具有良好的生物相容性,为下一步联合生物支架材料与干细胞构建功能性组织奠定了基础.  相似文献   

7.
Human mesenchymal stem cells tissue development in 3D PET matrices   总被引:5,自引:0,他引:5  
Human mesenchymal stem cells (hMSCs) are attractive cell sources for engineered tissue constructs with broad therapeutic potential. Three-dimensional (3D) hMSC tissue development in nonwoven poly(ethylene terephthalate) (PET) fibrous matrices was investigated. HMSCs were seeded onto 3D PET scaffolds and were cultured for over 1 month. Their proliferation rates were affected by seeding density but remained much lower than those of 2D controls. Compared to 2D surfaces, hMSCs grown in 3D scaffolds secreted and embedded themselves in an extensive ECM network composed of collagen I, collagen IV, fibronectin, and laminin. HMSCs were influenced by the orientation of adjacent PET fibers to organize the ECM proteins into highly aligned fibrils. We observed the increased expressions of alpha(2)beta(1) integrin but a slight decrease in the expression of alpha(5)beta(1) integrin in 3D compared to 2D culture and found that alpha(V)beta(3) was expressed only in 2D. Paxillin expression was down-regulated in 3D culture with a concomitant change in its localization patterns. We demonstrated the multi-lineage potentials of the 3D tissue constructs by differentiating the cells grown in the scaffolds into osteoblasts and adipocytes. Taken together, these results showed that hMSCs grown in 3D scaffolds display tissue development patterns distinct from their 2D counterparts and provide important clues for designing 3D scaffolds for developing tissue engineered constructs.  相似文献   

8.
Combination of adipose-derived mesenchymal stem cells (ADSCs) and synthetic materials in terms of pancreatic tissue engineering can be considered as a treatment of diabetes. This study aimed to evaluate the differentiation of human ADSCs to pancreatic cells on poly-l -lactic acid/polyvinyl alcohol (PLLA/PVA) nanofibers as a three-dimensional (3D) scaffold. Mesenchymal stem cells (MSCs) were characterized for mesenchymal surface markers by flow cytometry. Then ADSCs were seeded on 3D scaffolds and treated with pancreatic differentiation medium. Immunostaining assay showed that ADSCs were very efficiently differentiated into a relatively homogeneous population of insulin-producing cells. Moreover, real-time RT-PCR results revealed that pancreas-specific markers were highly expressed in 3D scaffolds compared with their expression in tissue culture plates and this difference in expression level was significant. In addition, insulin and C-peptide secreted in response to varying concentrations of glucose in the 3D scaffold group was significantly higher than that in 2D culture. The results of the present study confirmed that PLLA/PVA scaffold seeded with ADSCs could be a suitable option in pancreatic tissue engineering.  相似文献   

9.
Stem cell-based tissue engineering holds much hope for the development of multifunctional tissues to replace diseased organs. The attachment and survival of stem cells on a three-dimensional (3D) scaffold must be enhanced for faster progression of stem cell based tissue engineering. This study evaluate the stability of mesenchymal stem cells (MSCs) in 3D porous scaffolds composed of a collagen and chitosan blend impregnated with epidermal growth factor incorporated chitosan nanoparticles (EGF-CNP). The EGF-CNP scaffolds were characterized by transmission electron microscopy, which revealed that the nanoparticles were round in shape and 20 ∼ 50 nm in size. The scaffolds were prepared by freeze drying. A Fourier-transform infrared spectrum study revealed that the linkage between collagen and chitosan was through an ionic interaction. Thermal analysis and degradation studies showed that the scaffold could be used in tissue engineering application. MSCs proliferated well in the EGF-CNP impregnated scaffold. A scanning electron microscope study showed anchored and elongated MSCs on the EGF-CNP impregnated scaffold. A 3D biodegradable collagen chitosan scaffold impregnated with EGF-CNP is a promising transportable candidate for MSC-based tissue engineering, and this scaffold could be used as an in vitro model for subsequent clinical applications.  相似文献   

10.
Electrospun scaffolds hold promise for the regeneration of dense connective tissues, given their nanoscale topographies, provision of directional cues for infiltrating cells and versatile composition. Synthetic slow-degrading scaffolds provide long-term mechanical support and nanoscale instructional cues; however, these scaffolds suffer from a poor infiltration rate. Alternatively, nanofibrous constructs formed from natural biomimetic materials (such as collagen) rapidly infiltrate but provide little mechanical support. To take advantage of the positive features of these constructs, we have developed a composite scaffold consisting in both a biomimetic fiber fraction (i.e., Type I collagen nanofibers) together with a traditional synthetic (i.e., poly-[ε-caprolactone], PCL) fiber fraction. We hypothesize that inclusion of biomimetic elements will improve initial cell adhesion and eventual scaffold infiltration, whereas the synthetic elements will provide controlled and long-term mechanical support. We have developed a method of forming and crosslinking collagen nanofibers by using the natural crosslinking agent genipin (GP). Further, we have formed composites from collagen and PCL and evaluated the long-term performance of these scaffolds when seeded with mesenchymal stem cells. Our results demonstrate that GP crosslinking is cytocompatible and generates stable nanofibrous type I collagen constructs. Composites with varying fractions of the biomimetic and synthetic fiber families are formed and retain their collagen fiber fractions during in vitro culture. However, at the maximum collagen fiber fractions (20%), cell ingress is limited compared with pure PCL scaffolds. These results provide a new foundation for the development and optimization of biomimetic/synthetic nanofibrous composites for in vivo tissue engineering.  相似文献   

11.
Electrospun nanofibrous scaffolds show huge potential to improve the neurological outcome in central nervous system disorders. In this study, we cultured mouse embryonic stem cells (mESCs) on an electrospun nanofibrous polylactic acid/Chitosan/Wax (PLA/CS/Wax) scaffold and surveyed the attachment, behavior, and differentiation of mESCs into neural cells. Differentiation in neural-like cells (NLCs) was investigated with a medium containing SB431542 as a small molecule and conjugated linolenic acid after 20 days. We used Immunocytochemistry and quantitative real-time polymerase chain reaction (RT-PCR) techniques to assess neural marker expression in differentiated cells. SEM imaging demonstrated that mESCs could strongly attach, stretch, and differentiate on PLA/CS/Wax scaffolds. MESCs that were cultured on PLA/CS/Wax scaffolds showed enhanced numbers of neural structures and neural markers including Nestin, NF-H, Tuj-1, and Map2 in neural induction medium compared to the control sample. These results revealed that electrospun PLA/CS/Wax scaffolds associated with the induction medium can assemble proper conditions for stem cell differentiation into NLCs. We hope that the development of new technologies in neural tissue engineering may pave a new avenue for neural tissue regeneration.  相似文献   

12.
Cardiac tissue engineering has evolved as a potential therapeutic approach to assist in cardiac regeneration. We have recently shown that tissue-engineered cardiac graft, constructed from cardiomyocytes seeded within an alginate scaffold, is capable of preventing the deterioration in cardiac function after myocardial infarction in rats. The present article addresses cell seeding within porous alginate scaffolds in an attempt to achieve 3D high-density cardiac constructs with a uniform cell distribution. Due to the hydrophilic nature of the alginate scaffold, its >90% porosity and interconnected pore structure, cell seeding onto the scaffold was efficient and short, up to 30 min. Application of a moderate centrifugal force during cell seeding resulted in a uniform cell distribution throughout the alginate scaffolds, consequently enabling the loading of a large number of cells onto the 3D scaffolds. The percent cell yield in the alginate scaffolds ranged between 60-90%, depending on cell density at seeding; it was 90% at seeding densities of up to 1 x 10(8) cells/cm(3) scaffold and decreased to 60% at higher densities. The highly dense cardiac constructs maintained high metabolic activity in culture. Scanning electron microscopy revealed that the cells aggregated within the scaffold pores. Some of the aggregates were contracting spontaneously within the matrix pores. Throughout the culture there was no indication of cardiomyocyte proliferation within the scaffolds, nor was it found in 3D cultures of cardiofibroblasts. This may enable the development of cardiac cocultures, without domination of cardiofibroblasts with time.  相似文献   

13.
Two-dimensional vs three-dimensional culture conditions, such as the presence of extracellular matrix components, could deeply influence the cell fate and properties. In this paper we investigated proliferation, differentiation, survival, apoptosis, growth and neurotrophic factor synthesis of rat embryonic stem cells (RESCs) cultured in 2D and 3D conditions generated using Cultrex® Basement Membrane Extract (BME) and in poly-(l-lactic acid) (PLLA) electrospun sub-micrometric fibres. It is demonstrated that, in the absence of other instructive stimuli, growth, differentiation and paracrine activity of RESCs are directly affected by the different microenvironment provided by the scaffold. In particular, RESCs grown on an electrospun PLLA scaffolds coated or not with BME have a higher proliferation rate, higher production of bioactive nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) compared to standard 2D conditions, lasting for at least 2 weeks. Due to the high mechanical flexibility of PLLA electrospun scaffolds, the PLLA/stem cell culture system offers an interesting potential for implantable neural repair devices.  相似文献   

14.
Bottom-up engineering of microscale tissue ("microtissue") constructs to recapitulate partially the complex structure-function relationships of liver parenchyma has been realized through the development of sophisticated biomaterial scaffolds, liver-cell sources, and in vitro culture techniques. With regard to in vivo applications, the long-lived stem/progenitor cell constructs can improve cell engraftment, whereas the short-lived, but highly functional hepatocyte constructs stimulate host liver regeneration. With regard to in vitro applications, microtissue constructs are being adapted or custom-engineered into cell-based assays for testing acute, chronic and idiosyncratic toxicities of drugs or pathogens. Systems-level methods and computational models that represent quantitative relationships between biomaterial scaffolds, cells and microtissue constructs will further enable their rational design for optimal integration into specific biomedical applications.  相似文献   

15.
Expansion of seeded human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) on 2D culture plates and 3D nano-hydroxyapatite/chitosan/gelatin scaffolds, from morphology and osteoactivity points of view, were investigated. Cell attachment and spreading, temporal expression profiles of selected osteogenic gene and protein markers, intracellular alkaline phosphatase enzyme activity (ALP activity), and matrix mineralization were assayed over the course of the experiments. Morphological results demonstrated hWJ-MSCs had greater affinity to adhere onto the 3D scaffold surface, as the number and thickness of the filopodia were higher in the 3D compared with 2D culture system. Functionally, the intracellular ALP activity and extracellular mineralization in 3D scaffolds were significantly greater, in parallel with elevation of osteogenic markers at the mRNA and protein levels at all-time point. It is concluded that 3D scaffolds, more so than 2D culture plate, promote morphology and osteogenic behavior of WJ-MSCs in vitro, a promising system for MSCs expansion without compromising their stemness before clinical transplantation.  相似文献   

16.
During in vivo tissue regeneration, cell behavior is highly influenced by the surrounding environment. Thus, the choice of scaffold material and its microstructure is one of the fundamental steps for a successful in vitro culture. An efficacious method for scaffold fabrication should prove its versatility and the possibility of controlling micro- and nanostructure. In this paper, hyaluronic acid 3D scaffolds were developed through lamination of micropatterned membranes, fabricated after optimization of a soft-lithography method. The scaffold presented here is characterized by a homogeneous hexagonal lattice with porosity of 69%, specific surface area of 287 cm-1, and permeability of 18.9 microm2. The control over the geometry was achieved with an accuracy of 20 mum. This technique allowed not only fabrication of planar 3D scaffolds but also production of thin wall tubular constructs. Mechanical tests, performed on dry tubular scaffolds, show high rupture tensile strength. This construct could be promising not only as engineered vascular grafts but also for regeneration of skin, urethra, and intestinal walls. The biocompatibility of a 3D planar scaffold was tested by seeding human fibroblasts. The cells were cultured in both static and dynamic conditions, in a perfusion bioreactor at different flow rates. Microscope analysis and MTT test showed cell proliferation and viability and a uniform cell distribution likely due to an appropriate lattice structure.  相似文献   

17.
Adipose tissue engineering offers a promising alternative to the current surgical techniques for the treatment of soft tissue defects. It is a challenge to find the appropriate scaffold that not only represents a suitable environment for cells but also allows fabrication of customized tissue constructs, particularly in breast surgery. We investigated two different scaffolds for their potential use in adipose tissue regeneration. Sponge-like polyurethane scaffolds were prepared by mold casting with methylal as foaming agent, whereas polycaprolactone scaffolds with highly regular stacked-fiber architecture were fabricated with fused deposition modeling. Both scaffold types were seeded with human adipose tissue-derived precursor cells, cultured and implanted in nude mice using a femoral arteriovenous flow-through vessel loop for angiogenesis. In vitro, cells attached to both scaffolds and differentiated into adipocytes. In vivo, angiogenesis and adipose tissue formation were observed throughout both constructs after 2 and 4?weeks, with angiogenesis being comparable in seeded and unseeded constructs. Fibrous tissue formation and adipogenesis were more pronounced on polyurethane foam scaffolds than on polycaprolactone prototyped scaffolds. In conclusion, both scaffold designs can be effectively used for adipose tissue engineering.  相似文献   

18.
Transplantation of stem cells using biodegradable and biocompatible nanofibrous scaffolds is a promising therapeutic approach for treating inherited retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. In this study, conjunctiva mesenchymal stem cells (CJMSCs) were seeded onto poly-l-lactic acid (PLLA) nanofibrous scaffolds and were induced to differentiate toward photoreceptor cell lineages. Furthermore, the effects of orientation of scaffold on photoreceptor differentiation were examined. Scanning electron microscopy (SEM) imaging, quantitative real time RT-PCR (qPCR) and immunocytochemistry were used to analyze differentiated cells and their expression of photoreceptor-specific genes. Our observations demonstrated the differentiation of CJMSCs to photoreceptor cells on nanofibrous scaffolds and suggested their potential application in retinal regeneration. SEM imaging showed that CJMSCs were spindle shaped and well oriented on the aligned nanofiber scaffolds. The expression of rod photoreceptor-specific genes was significantly higher in CJMSCs differentiated on randomly-oriented nanofibers compared to those on aligned nanofibers. According to our results we may conclude that the nanofibrous PLLA scaffold reported herein could be used as a potential cell carrier for retinal tissue engineering and a combination of electrospun nanofiber scaffolds and MSC-derived conjunctiva stromal cells may have potential application in retinal regenerative therapy.  相似文献   

19.
Cell-based tissue engineering is limited by the size of cell-containing constructs that can be successfully cultured in vitro. This limit is largely a result of the slow diffusion of molecules such as oxygen into the interior of three-dimensional scaffolds in static culture. Bioreactor culture has been shown to overcome these limits. In this study we utilize a tubular perfusion system (TPS) bioreactor for the three-dimensional dynamic culture of human mesenchymal stem cells (hMSCs) in spherical alginate bead scaffolds. The goal of this study is to examine the effect of shear stress in the system and then quantify the proliferation and differentiation of hMSCs in different radial annuli of the scaffold. Shear stress was shown to have a temporal effect on hMSC osteoblastic differentiation with a strong correlation of shear stress, osteopontin, and bone morphogenic protein-2 occurring on day 21, and weaker correlation occurring at early timepoints. Further results revealed an approximate 2.5-fold increase in cell number in the inner annulus of TPS cultured constructs as compared to statically cultured constructs after 21 days. This result demonstrated a nutrient transfer limitation in static culture which can be mitigated by dynamic culture. A significant increase (P < 0.05) in mineralization in the inner and outer annuli of bioreactor cultured 4 mm scaffolds occurred on day 21 with 79 ± 29% and 53 ± 25% mineralization area, respectively, compared to 6 ± 4% and 19 ± 6% mineralization area, respectively, in inner and outer annuli of 4 mm statically cultured scaffolds. Surprising lower mineralization area was observed in 2 mm bioreactor cultured beads which had the highest levels of proliferation. These results may demonstrate a relationship between scaffold position and stem cell fate. In addition the decreased proliferation and matrix production in statically cultured scaffolds compared to bioreactor cultured constructs demonstrate the need for bioreactor systems and the effectiveness of the TPS bioreactor in promoting hMSC proliferation and differentiation in three-dimensional scaffolds.  相似文献   

20.
Novel bioengineering strategies for the ex vivo fabrication of native‐like tissue‐engineered cartilage are crucial for the translation of these approaches to clinically manage highly prevalent and debilitating joint diseases. Bioreactors that provide different biophysical stimuli have been used in tissue engineering approaches aimed at enhancing the quality of the cartilage tissue generated. However, such systems are often highly complex, expensive, and not very versatile. In the current study, a novel, cost‐effective, and customizable perfusion bioreactor totally fabricated by additive manufacturing (AM) is proposed for the study of the effect of fluid flow on the chondrogenic differentiation of human bone‐marrow mesenchymal stem/stromal cells (hBMSCs) in 3D porous poly(?‐caprolactone) (PCL) scaffolds. hBMSCs are first seeded and grown on PCL scaffolds and hBMSC–PCL constructs are then transferred to 3D‐extruded bioreactors for continuous perfusion culture under chondrogenic inductive conditions. Perfused constructs show similar cell metabolic activity and significantly higher sulfated glycosaminoglycan production (≈1.8‐fold) in comparison to their non‐perfused counterparts. Importantly, perfusion bioreactor culture significantly promoted the expression of chondrogenic marker genes while downregulating hypertrophy. This work highlights the potential of customizable AM platforms for the development of novel personalized repair strategies and more reliable in vitro models with a wide range of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号