首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
2.
The E6 protein of the high-risk human papillomaviruses (HPVs) and the cellular ubiquitin-protein ligase E6AP form a complex which causes the ubiquitination and degradation of p53. We show here that HPV16 E6 promotes the ubiquitination and degradation of E6AP itself. The half-life of E6AP is shorter in HPV-positive cervical cancer cells than in HPV-negative cervical cancer cells, and E6AP is stabilized in HPV-positive cancer cells when expression of the viral oncoproteins is repressed. Expression of HPV16 E6 in cells results in a threefold decrease in the half-life of transfected E6AP. E6-mediated degradation of E6AP requires (i) the binding of E6 to E6AP, (ii) the catalytic activity of E6AP, and (iii) activity of the 26S proteasome, suggesting that E6-E6AP interaction results in E6AP self-ubiquitination and degradation. In addition, both in vitro and in vivo experiments indicate that E6AP self-ubiquitination results primarily from an intramolecular transfer of ubiquitin from the active-site cysteine to one or more lysine residues; however, intermolecular transfer can also occur in the context of an E6-mediated E6AP multimer. Finally, we demonstrate that an E6 mutant that is able to immortalize human mammary epithelial cells but is unable to degrade p53 retains its ability to bind and degrade E6AP, raising the possibility that E6-mediated degradation of E6AP contributes to its ability to transform mammalian cells.  相似文献   

3.
《Biophysical journal》2022,121(9):1704-1714
In epithelial tumors, oncoprotein E6 binds with the ubiquitin ligase E6AP to form E6/E6AP heterodimer; then this heterodimer recruits p53 to form E6/E6AP/p53 heterotrimer and induces p53 degradation. Recent experiments demonstrated that three E6 single-site mutants (F47R, R102A, and L50E) can inhibit the E6/E6AP/p53 heterotrimer formation and rescue p53 from the degradation pathway. However, the molecular mechanism underlying mutation-induced heterotrimer inhibition remains largely elusive. Herein, we performed extensive molecular dynamics simulations (totally ~13 μs) on both heterodimer and heterotrimer to elucidate at an atomic level how each p53-degradation-defective HPV16 E6 mutant reduces the structural stabilities of the two complexes. Our simulations reveal that the three E6 mutations destabilize the structure of E6/E6AP/p53 complex through distinct mechanisms. Although F47RE6 mutation has no effect on the structure of E6/E6AP heterodimer, it results in an electrostatic repulsion between R47E6 and R290p53, which is unfavorable for E6-p53 binding. R102AE6 mutation destabilizes the structure of E6/E6AP heterodimer and significantly disrupts hydrophobic and cation-π interactions between F47E6 and E286p53/L298p53/R290p53. L50EE6 mutation impairs both E6 interdomain interactions (especially F47-K108 cation-π interaction) and E6-E6AP intermolecular interactions important for the stabilization of E6/E6AP heterodimer. This study identifies the intra- and intermolecular interactions crucial for the complex stability, which may provide mechanistic insights into the inhibition of complex formation by the three HPV16 E6 mutations.  相似文献   

4.
Cervical cancers evolve from lesions generated by genital human papillomaviruses (HPV). "Low-risk" genital HPVs cause benign proliferations whereas "high-risk" types have the potential to progress into cancer. High-risk HPV E6 oncoproteins interact with the ubiquitin ligase E6AP and target several cellular proteins, including p53 and proteins of the MAGI family, towards ubiquitin-mediated degradation. E6AP, like other E6 binding proteins such as E6BP, IRF-3 and paxillin, interacts with E6 via a consensus leucine-charged motif. Here we have investigated the kinetics of the interactions of a 15-mer peptide containing the LxxvarphiLsh motif of E6AP with E6. For this we have developed a Biacore assay based on antibody-capture on the sensor surface of GST- and/or MBP-E6AP peptide constructs followed by E6 protein injection. Our experiments show that E6 oncoproteins from four major high-risk (16, 18, 33 and 58) HPV types bind to E6AP with equilibrium dissociation constants in the low micromolar range. The kinetic dissociation parameters of these interactions are remarkably similar. On the other hand, low-risk HPV 11 E6 does not interact with E6AP even at relatively high concentrations. We also show that the two zinc-binding domains of E6 are required for E6AP recognition. Finally, we have analysed the binding properties of site-directed mutants of the E6AP-derived peptide. We demonstrate the importance for binding of conserved aliphatic side-chains and the moderate role of the global negative charge of the peptide. This work provides the first quantitative data on an HPV E6-mediated interaction, which support the current models of E6AP-mediated degradation.  相似文献   

5.
Oncoprotein E6 is essential for oncogenesis induced by human papillomaviruses (HPVs). The solution structure of HPV16-E6 C-terminal domain reveals a zinc binding fold. A model of full-length E6 is proposed and analyzed in the context of HPV evolution. E6 appears as a chameleon protein combining a conserved structural scaffold with highly variable surfaces participating in generic or specialized HPV functions. We investigated surface residues involved in two specialized activities of high-risk genital HPV E6: p53 tumor suppressor degradation and nucleic acid binding. Screening of E6 surface mutants identified an in vivo p53 degradation-defective mutant that fails to recruit p53 to ubiquitin ligase E6AP and restores high p53 levels in cervical carcinoma cells by competing with endogeneous E6. We also mapped the nucleic acid binding surface of E6, the positive potential of which correlates with genital oncogenicity. E6 structure-function analysis provides new clues for understanding and counteracting the complex pathways of HPV-mediated pathogenesis.  相似文献   

6.
7.
X Li  P Coffino 《Journal of virology》1996,70(7):4509-4516
Human papillomavirus (HPV) E6 protein can inactivate tumor suppressor p53 by inducing its degradation. We now find that high-risk HPV E6 binds to p53 at two distinct sites; one is within the core structure of p53, and another is at the C terminus of p53. Binding to the core of p53 is required for E6-mediated degradation, as shown by deletion analysis and the properties of a point mutant at residue 135. Both low- and high-risk HPV E6 can bind to a C-terminal region of p53, but these interactions do not induce degradation. These results resolve previous seemingly contradictory findings that attributed the distinctive functional properties of high- and low-risk E6 proteins to either a difference in their abilities to associate with p53 or a difference in their N-terminal structures.  相似文献   

8.
The HPV E6 oncoprotein maintains the malignant phenotype of HPV-positive cancer cells and represents an attractive therapeutic target. E6 forms a complex with the cellular E6AP ubiquitin ligase, ultimately leading to p53 degradation. The recently elucidated x-ray structure of a HPV16 E6/E6AP complex showed that HPV16 E6 forms a distinct binding pocket for E6AP. This discovery raises the question whether the E6AP binding pocket is druggable, i. e. whether it provides a docking site for functional E6 inhibitors. To address these issues, we performed a detailed analysis of the HPV16 E6 interactions with two small peptides: (i) E6APpep, corresponding to the E6 binding domain of E6AP, and (ii) pep11**, a peptide that binds to HPV16 E6 and, in contrast to E6APpep, induces apoptosis, specifically in HPV16-positive cancer cells. Surface plasmon resonance, NMR chemical shift perturbation, and mammalian two-hybrid analyses coupled to mutagenesis indicate that E6APpep contacts HPV16 E6 amino acid residues within the E6AP pocket, both in vitro and intracellularly. Many of these amino acids were also important for binding to pep11**, suggesting that the binding sites for the two peptides on HPV16 E6 overlap. Yet, few E6 amino acids were differentially involved which may contribute to the higher binding affinity of pep11**. Data from the HPV16 E6/pep11** interaction allowed the rational design of single amino acid exchanges in HPV18 and HPV31 E6 that enabled their binding to pep11**. Taken together, these results suggest that E6 molecular surfaces mediating E6APpep binding can also accommodate pro-apoptotic peptides that belong to different sequence families. As proof of concept, this study provides the first experimental evidence that the E6AP binding pocket is druggable, opening new possibilities for rational, structure-based drug design.  相似文献   

9.
Ro HS  Koh BH  Jung SO  Park HK  Shin YB  Kim MG  Chung BH 《Proteomics》2006,6(7):2108-2111
We have developed a surface plasmon resonance (SPR)-based protein microarray to study protein-protein interactions in a high-throughput mode. As a model system, triple protein interactions have been explored with human papillomaviral E6 protein, tumor suppressor p53, and ubiquitin ligase E6AP. Human papillomavirus (HPV) is known to be a causative agent of cervical cancer. Upon infection, the viral E6 protein forms a heterotrimeric protein complex with p53 and E6AP. The formation of the complex eventually results in the degradation of p53. In the present study, a GST-fused E6AP protein was layered onto a glutathione (GSH)-modified gold chip surface. The specific binding of GST-E6AP protein onto the gold chip surface was facilitated through the affinity of GST to its specific ligand GSH. The interacting proteins (E6 and/or p53) were then spotted. Detection of the interaction was performed using a SPR imaging (SPRI) technique. The resulting SPRI intensity data showed that the protein-protein interactions of E6AP, E6, and p53 were detected in a concentration-dependent manner, suggesting that the SPRI-based microarray system can be an effective tool to study protein-protein interactions where multiple proteins are involved.  相似文献   

10.
11.
The E6 oncoprotein produced by high-risk mucosal HPV stimulates ubiquitinylation and proteasome-dependent degradation of the tumour suppressor p53 via formation of a trimeric complex comprising E6, p53, and E6-AP. p53 is also degraded by its main cellular regulator MDM2. The main binding site of p53 to MDM2 is situated in the natively unfolded N-terminal region of p53. By contrast, the regions of p53 implicated in the degradation by viral E6 are not fully identified to date. Here we generated a series of mutations (Y103G, Y107G, T155A, T155V, T155D, L264A, L265A) targeting the central folded core domain of p53 within a region opposite to its DNA-binding site. We analysed by in vitro and in vivo assays the impact of these mutations on p53 degradation mediated by viral E6 oncoprotein. Whereas all mutants remained susceptible to MDM2-mediated degradation, several of them (Y103G, Y107G, T155D, L265A) became resistant to E6-mediated degradation, confirming previous works that pointed to the core domain as an essential region for the degradation of p53. In parallel, we systematically checked the impact of the mutations on the transactivation activity of p53 as well as on the conformation of p53, analysed by Nuclear Magnetic Resonance (NMR), circular dichroism (CD), and antibody probing. These measurements suggested that the conformational integrity of the core domain is an essential parameter for the degradation of p53 by E6, while it is not essential for the degradation of p53 by MDM2. Thus, the intracellular stability of a protein may or may not rely on its biophysical stability depending on the degradation pathway taken into consideration.  相似文献   

12.
The E6 and the E7 proteins of the oncogenic human papillomavirus types 16 and 18 can stably associate with p53 and the retinoblastoma protein, respectively. The E6-p53 interaction results in the accelerated degradation of p53 in vitro via the ubiquitin-dependent proteolysis system. In this study we demonstrate that a fusion protein consisting of the N-terminal half of the HPV-16 E7 protein and the full length HPV-16 E6 protein promotes the in vitro degradation of the retinoblastoma protein. This indicates that the property of the HPV-16 E6 protein to stimulate the degradation of p53 can be targeted to other proteins. Unlike the HPV-16 or HPV-18 E6 protein, the E6 proteins of HPV-6 and 11 do not bind to p53 and consequently do not target p53 for degradation. Analogous E7-E6 fusion proteins using the E6 proteins of HPV-6 and HPV-11, however, also have the ability to promote the degradation of the retinoblastoma protein, indicating that the property to target associated proteins for degradation is shared by the anogenital specific HPV E6 proteins.  相似文献   

13.
14.

Background

Our previous studies showed a down-regulation of GRIM-19 in primary human cervical cancers, and restoration of GRIM-19 induced tumor regression. The induction of tumor suppressor protein p53 ubiquitination and degradation by E6 oncoportein of high risk-HPV through forming a stable complex with E6AP is considered as a critical mechanism for cervical tumor development. The aims of this study were to determine the potential role of GRIM-19 in rescuing p53 protein and inducing cervical cancer cell apoptosis.

Methodology/Principal Findings

The protein levels of GRIM-19 and p53 were detected in normal cervical tissues from 45 patients who underwent hysterectomy for reasons other than neoplasias of either the cervix or endometrium, and cervical cancer tissues from 60 patients with non-metastatic squamous epithelial carcinomas. Coimmunoprecipitation and GST pull-down assay were performed to examine the interaction of GRIM-19 with 18E6 and E6AP in vivo and in vitro respectively. The competition of 18E6 with E6AP in binding GRIM-19 by performing competition pull-down assays was designed to examine the disruption of E6/E6AP complex by GRIM-19. The augment of E6AP ubiquitination by GRIM-19 was detected in vivo and in vitro ubiquitination assay. The effects of GRIM-19-dependent p53 accumulation on cell proliferation, cell cycle, apoptosis were explored by MTT, flow cytometry and transmission electron microscopy respectively. The tumor suppression was detected by xenograft mouse model.

Conclusion/Significance

The levels of GRIM-19 and p53 were concurrently down regulated in cervical cancers. The restoration of GRIM-19 can induce ubiquitination and degradation of E6AP, and disrupt the E6/E6AP complex through the interaction of N-terminus of GRIM-19 with both E6 and E6AP, which protected p53 from degradation and promoted cell apoptosis. Tumor xenograft studies also revealed the suppression of p53 degradation in presence of GRIM-19. These data suggest that GRIM-19 can block E6/E6AP complex; and synergistically suppress cervical tumor growth with p53.  相似文献   

15.
Human papillomavirus (HPV) E6 oncoproteins target many cellular proteins for ubiquitin-mediated proteasomal degradation. In the case of p53, this is mediated principally by the E6AP ubiquitin ligase. Several studies have reported that E6 can target certain of its substrates in an apparently E6AP-independent fashion and that several of these substrates vary in the degree to which they are degraded by E6 at different stages of malignancy. To more fully understand the regulation of the E6AP/E6 proteolytic targeting complex, we performed a mass spectroscopic analysis of HPV type 18 (HPV-18) E6 protein complexes and identified the HECT domain-containing ubiquitin ligase EDD as a new HPV-18 E6 binding partner. We show that EDD can interact independently with both E6 and E6AP. Furthermore, EDD appears to regulate E6AP expression levels independently of E6, and loss of EDD stimulates the proteolytic activity of the E6/E6AP complex. Conversely, higher levels of EDD expression protect a number of substrates from E6-induced degradation, partly as a consequence of lower levels of E6 and E6AP expression. Intriguingly, reduction in EDD expression levels in HPV-18-positive HeLa cells enhances cell resistance to apoptotic and growth arrest stimuli. These studies suggest that changes in the levels of EDD expression during different stages of the viral life cycle or during malignancy could have a profound effect upon the ability of E6 to target various substrates for proteolytic degradation and thereby directly influence the development of HPV-induced malignancy.  相似文献   

16.
17.
Differences in the ubiquitination of p53 by Mdm2 and the HPV protein E6   总被引:5,自引:0,他引:5  
Camus S  Higgins M  Lane DP  Lain S 《FEBS letters》2003,536(1-3):220-224
The human papillomavirus (HPV) protein E6 can promote the ubiquitination of the p53 tumour suppressor in vitro, providing an explanation for the ability of E6 to induce p53 degradation in vivo and contribute to the potential tumorigenic effect of the virus. Instead, in non-infected cells, p53 levels are primarily destabilised by the ubiquitin E3 ligase activity of the Mdm2 protein. Here we have compared the effects of E6 and Mdm2 on p53 ubiquitination in vivo. We show that whereas in the presence of Mdm2 proteasome inhibitors induce the accumulation of ubiquitinated forms of p53, this does not occur in the presence of E6. Accordingly, we confirm that the effect of E6 and p53 is independent of the six C-terminal lysine residues in p53, which have previously been described to play an important role for effective ubiquitination and degradation of 53 mediated by Mdm2. We also show that other yet unidentified residues in p53 are also susceptible to ubiquitination. These results indicate that E6 does not induce ubiquitination of p53 in the same way as Mdm2 in order to promote its degradation, suggesting important differences between the Mdm2 and E6 effects on p53 degradation.  相似文献   

18.
The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6.  相似文献   

19.
High risk strains of human papillomavirus (HPV), such as HPV 16, cause human cervical carcinoma. The E6 protein of HPV 16 mediates the rapid degradation of the tumor suppressor p53, although this is not the only function of E6 and cannot completely explain its transforming potential. Previous work in our laboratory has demonstrated that E6 can protect cells from tumor necrosis factor-induced apoptosis by binding to the C-terminal end of tumor necrosis factor R1, thus blocking apoptotic signal transduction. In this study, E6 was shown to also protect cells from apoptosis induced via the Fas pathway. Furthermore, use of an inducible E6 expression system demonstrated that this protection is dose-dependent, with higher levels of E6 leading to greater protection. Although E6 suppresses activation of both caspase 3 and caspase 8, it does not affect apoptotic signaling through the mitochondrial pathway. Mammalian two-hybrid and in vitro pull-down assays were then used to demonstrate that E6 binds directly to the death effector domain of Fas-associated death domain (FADD), with deletion and site-directed mutants enabling the localization of the E6-binding site to the N-terminal end of the FADD death effector domain. E6 is produced in two forms as follows: a full-length version of approximately 16 kDa and a smaller version of about half that size corresponding to the N-terminal half of the full-length protein. Pull-down and functional assays demonstrated that the full-length version, but not the small version of E6, was able to bind to FADD and to protect cells from Fas-induced apoptosis. In addition, binding to E6 leads to degradation of FADD, with the loss of cellular FADD proportional to the amount of E6 expressed. These results support a model in which E6-mediated degradation of FADD prevents transmission of apoptotic signals via the Fas pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号