首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The p53 tumor suppressor is regulated by the MDM2 oncoprotein through a negative feedback mechanism. MDM2 promotes the ubiquitination and proteasome-dependent degradation of p53, possibly by acting as a ubiquitin ligase. In cervical cancer cells containing high-risk human papillomaviruses (HPV), p53 is also targeted for degradation by the HPV E6 oncoprotein in combination with the cellular E6-AP ubiquitin ligase. In this report, we describe the identification of efficient antisense oligonucleotides against human E6-AP. The roles of MDM2 and E6-AP in p53 regulation were investigated using a novel E6-AP antisense oligonucleotide and a previously characterized MDM2 antisense oligonucleotide. In HPV16-positive and HPV-18 positive cervical cancer cells, inhibition of E6-AP, but not MDM2, expression results in significant induction of p53. In HPV-negative tumor cells, p53 is activated by inhibition of MDM2 but not E6-AP. Furthermore, treatment with both E6-AP and MDM2 antisense oligonucleotides in HPV-positive cells does not lead to further induction of p53 over inhibition of E6-AP alone. Therefore, E6-AP-mediated degradation is dominant over MDM2 in cervical cancer cells but does not have a significant role in HPV-negative cells.  相似文献   

3.
The oncogene mdm2 has been found to be amplified in human sarcomas, and the gene product binds to the tumor suppressor p53. In this report, we describe the dissection of the MDM2-binding domain on p53 as well as the p53-binding domain on MDM2. We also demonstrate that the oncoprotein simian virus 40 T antigen binds to the product of cellular oncogene mdm2. We have constructed several N- and C-terminal deletion mutants of p53 and MDM2, expressed them in vitro, and assayed their in vitro association capability. The N-terminal boundary of the p53-binding domain on MDM2 is between amino acids 1 and 58, while the C-terminal boundary is between amino acids 221 and 155. T antigen binds to an overlapping domain on the MDM2 protein. On the other hand, the MDM2-binding domain of p53 is defined by amino acids 1 and 159 at the N terminus. At the C terminus, binding is progressively reduced as amino acids 327 to 145 are deleted. We determined the effect of human MDM2 on the transactivation ability of wild-type human p53 in the Saos-2 osteosarcoma cell line, which does not have any endogenous p53. Human MDM2 inhibited the ability of human p53 to transactivate the promoter with p53-binding sites. Thus, human MDM2 protein, like the murine protein, can inactivate the transactivation ability of human p53. Interestingly, both the transactivation domain and the MDM2-binding domain of p53 are situated near the N terminus. We further show that deletion of the N-terminal 58 amino acids of MDM2, which eliminates p53 binding, also abolishes the capability of inactivating p53-mediated transactivation. This finding suggests a correlation of in vitro p53-MDM2 binding with MDM2's ability in vivo to interfere with p53-mediated transactivation.  相似文献   

4.
5.
6.
Regulation of p53 and MDM2 activity by MTBP   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

7.
The gene encoding p53 mediates a major tumor suppression pathway that is frequently altered in human cancers. p53 function is kept at a low level during normal cell growth and is activated in response to various cellular stresses. The MDM2 oncoprotein plays a key role in negatively regulating p53 activity by either direct repression of p53 transactivation activity in the nucleus or promotion of p53 degradation in the cytoplasm. DNA damage and oncogenic insults, the two best-characterized p53-dependent checkpoint pathways, both activate p53 through inhibition of MDM2. Here we report that the human homologue of MDM2, HDM2, binds to ribosomal protein L11. L11 binds a central region in HDM2 that is distinct from the ARF binding site. We show that the functional consequence of L11-HDM2 association, like that with ARF, results in the prevention of HDM2-mediated p53 ubiquitination and degradation, subsequently restoring p53-mediated transactivation, accumulating p21 protein levels, and inducing a p53-dependent cell cycle arrest by canceling the inhibitory function of HDM2. Interference with ribosomal biogenesis by a low concentration of actinomycin D is associated with an increased L11-HDM2 interaction and subsequent p53 stabilization. We suggest that L11 functions as a negative regulator of HDM2 and that there might exist in vivo an L11-HDM2-p53 pathway for monitoring ribosomal integrity.  相似文献   

8.
The nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis. Both depletion and overexpression of NS reduce cell proliferation. However, the mechanisms underlying this regulation are still unclear. Here, we show that NS regulates p53 activity through the inhibition of MDM2. NS binds to the central acidic domain of MDM2 and inhibits MDM2-mediated p53 ubiquitylation and degradation. Consequently, ectopic overexpression of NS activates p53, induces G(1) cell cycle arrest, and inhibits cell proliferation. Interestingly, the knockdown of NS by small interfering RNA also activates p53 and induces G(1) arrest. These effects require the ribosomal proteins L5 and L11, since the depletion of NS enhanced their interactions with MDM2 and the knockdown of L5 or L11 abrogated the NS depletion-induced p53 activation and cell cycle arrest. These results suggest that a p53-dependent cell cycle checkpoint monitors changes of cellular NS levels via the impediment of MDM2 function.  相似文献   

9.
Both MDM2 and MDMX regulate p53, but these proteins play different roles in this process. To clarify the difference, we performed a yeast 2 hybrid (Y2H) screen using the MDM2 acidic domain as bait. DNAJB1 was found to specifically bind to MDM2, but not MDMX, in vitro and in vivo. Further investigation revealed that DNAJB1 stabilizes MDM2 at the post-translational level. The C-terminus of DNAJB1 is essential for its interaction with MDM2 and for MDM2 accumulation. MDM2 was degraded faster by a ubiquitin-mediated pathway when DNAJB1 was depleted. DNAJB1 inhibited the MDM2-mediated ubiquitination and degradation of p53 and contributed to p53 activation in cancer cells. Depletion of DNAJB1 in cancer cells inhibited activity of the p53 pathway, enhanced the activity of the Rb/E2F pathway, and promoted cancer cell growth in vitro and in vivo. This function was p53 dependent, and either human papillomavirus (HPV) E6 protein or siRNA against p53 was able to block the contribution caused by DNAJB1 depletion. In this study, we discovered a new MDM2 interacting protein, DNAJB1, and provided evidence to support its p53-dependent tumor suppressor function.  相似文献   

10.
In higher eukaryotic cells, the p53 protein is degraded by the ubiquitin-26S proteasome system mediated by Mdm2 or the human papilloma virus E6 protein. Here we show that COP9 signalosome (CSN)-specific phosphorylation targets human p53 to ubiquitin-26S proteasome-dependent degradation. As visualized by electron microscopy, p53 binds with high affinity to the native CSN complex. p53 interacts via its N-terminus with CSN subunit 5/Jab1 as shown by far-western and pull-down assays. The CSN-specific phosphorylation sites were mapped to the core domain of p53 including Thr155. A phosphorylated peptide, Deltap53(145-164), specifically inhibits CSN-mediated phosphorylation and p53 degradation. Curcumin, a CSN kinase inhibitor, blocks E6-dependent p53 degradation in reticulocyte lysates. Mutation of Thr155 to valine is sufficient to stabilize p53 against E6-dependent degradation in reticulocyte lysates and to reduce binding to Mdm2. The p53T155V mutant accumulates in both HeLa and HL 60 cells and exhibits a mutant (PAb 240+) conformation. It induces the cyclin-dependent inhibitor p21. In HeLa and MCF-7 cells, inhibition of CSN kinase by curcumin or Deltap53(145-164) results in accumulation of endogenous p53.  相似文献   

11.
MDM2 can bind to p53 and promote its ubiquitination and subsequent degradation by the proteasome. Current models propose that nuclear export of p53 is required for MDM2-mediated degradation, although the function of MDM2 in p53 nuclear export has not been clarified. Here we show that MDM2 can promote the nuclear export of p53 in transiently transfected cells. This activity requires the nuclear-export signal (NES) of p53, but not the NES of MDM2. A mutation within the MDM2 RING-finger domain that inhibits p53 ubiquitination also inhibits the ability of MDM2 to promote p53 nuclear export. Finally, inhibition of nuclear export stabilizes wild-type p53 and leads to accumulation of ubiquitinated p53 in the nucleus. Our results indicate that MDM2-mediated ubiquitination, or other activities associated with the RING-finger domain, can stimulate the export of p53 to the cytoplasm through the activity of the p53 NES.  相似文献   

12.
MDM2 is an E3 ubiquitin ligase that targets p53 for proteasomal degradation. Recent studies have shown, however, that the ring-finger domain (RFD) of MDM2, where the ubiquitin E3 ligase activity resides, is necessary but not sufficient for p53 ubiquitination, suggesting that an additional activity of MDM2 might be required. To test this possibility, we generated a series of MDM2/MDMX chimeric proteins to assess the contribution of each domain of MDM2 to the ubiquitination process. MDMX is a close structural homolog of MDM2 that nevertheless lacks the E3 ligase activity in vivo. We demonstrate here that MDMX gains self-ubiquitination activity and becomes extremely unstable upon introduction of the MDM2 RFD, indicating that the RFD is essential for self-ubiquitination. This MDMX chimeric protein, however, is unable to ubiquitinate p53 in vivo despite its E3 ligase activity and binding to p53, separating the self-ubiquitination activity of MDM2 from its ability to ubiquitinate p53. Significantly, fusion of the central acidic domain (AD) of MDM2 to the MDMX chimeric protein renders the protein fully capable of ubiquitinating p53, and p53 ubiquitination is associated with p53 degradation and nuclear export. Moreover, the AD mini protein expressed in trans can functionally rescue the AD-lacking MDM2 mutant, further supporting a critical role for the AD in MDM2-mediated p53 ubiquitination.  相似文献   

13.
14.
Cells undergoing p53-mediated apoptosis activate caspase 3-like activities, resulting in the cleavage of the MDM2 oncoprotein and other apoptotic substrates such as poly(ADP-ribose) polymerase. To investigate the mechanism of p53-mediated apoptosis and to determine whether cleavage of MDM2 has a potential role in regulating p53, we examined caspase activation and cleavage of MDM2 in a cell line undergoing p53-mediated growth arrest and delayed apoptosis. We found that in H1299 cells expressing a temperature-sensitive human p53, a distinct caspase activity specific for the MDM2 cleavage site DVPD is induced by p53 prior to the onset of apoptosis and loss of viability. This is accompanied by the cleavage of MDM2 but not the apoptotic substrate poly(ADP-ribose) polymerase. The cleaved MDM2 loses the ability to promote p53 degradation and may potentially function in a dominant-negative fashion to stabilize p53. These results suggest that p53 activation may induce a positive feedback effect by cleavage of MDM2 through a unique caspase.  相似文献   

15.
Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization   总被引:8,自引:0,他引:8  
Stabilization and overexpression are hallmarks of mutant p53 found in nearly 50% of human tumors. Mutations in the conformation-sensitive core domain of p53 often lead to association with molecular chaperones such as hsp70 and hsp90. Inhibition of hsp90 function accelerates mutant p53 degradation. We recently found that expression of p53 core domain mutants inhibits MDM2 degradation, suggesting that mutant p53 can modulate MDM2 functions. In this report, we show that mutant p53 mediates formation of MDM2-p53-hsp90 complexes. Release of MDM2 from the p53-hsp90 complex after DNA damage restores MDM2 but not p53 turnover, whereas dissociation of hsp90 by geldanamycin increases the degradation of both MDM2 and mutant p53. Mutant p53 degradation after hsp90 inhibition requires MDM2 expression. The interaction between MDM2 and hsp90 is disrupted by the 2A10 antibody, which recognizes a site on MDM2 important for binding to alternative reading frame (ARF). Expression of mutant p53 prevents MDM2 from binding ARF and accumulating in the nucleolus in an hsp90-dependent fashion. These results suggest that hsp90 recruited by mutant p53 conceals the ARF-binding site on MDM2 and inhibits its ubiquitin-protein isopeptide ligase function, resulting in the stabilization of both mutant p53 and MDM2.  相似文献   

16.
17.
The viral oncoprotein E6 is an essential factor for cervical cancers induced by "high-risk" mucosal HPV. Among other oncogenic activities, E6 recruits the ubiquitin ligase E6AP to promote the ubiquitination and subsequent proteasomal degradation of p53. E6 is prone to self-association, which long precluded its structural analysis. Here we found that E6 specifically dimerizes through its N-terminal domain and that disruption of the dimer interface strongly increases E6 solubility. This allowed us to raise structural data covering the entire HPV16 E6 protein, including the high-resolution NMR structures of the two zinc-binding domains of E6 and a robust data-driven model structure of the N-terminal domain homodimer. Interestingly, homodimer interface mutations that disrupt E6 self-association also inactivate E6-mediated p53 degradation. These data suggest that E6 needs to self-associate via its N-terminal domain to promote the polyubiquitination of p53 by E6AP.  相似文献   

18.
It has been demonstrated that MDM2 can differentially regulate subcellular distribution of p53 and its close structural homologue p73. In contrast to MDM2-mediated p53 nuclear export, p73 accumulates in the nucleus as aggregates that colocalize with MDM2. Distinct distribution patterns of p53 and p73 suggest the existence of unique structural elements in the two homologues that determine their MDM2-mediated relocalization in the cell. Using a series of p53/p73 chimeric proteins, we demonstrate that three regions of p53 are involved in the regulation of MDM2-mediated nuclear export. The DNA binding domain (DBD) is involved in the maintenance of a proper conformation that is required for functional activity of the nuclear export sequence (NES) of p53. The extreme C terminus of p53 harbors several lysine residues whose ubiquitination by MDM2 appears to be the initial event in p53 nuclear export, as evidenced by the impaired nucleocytoplasmic shuttling of p53 mutants bearing simultaneous substitutions of lysines 370, 372, 373, 381, 382, and 386 to arginines (6KR) or alanines (6KA). Finally, the region between the DBD and the oligomerization domain of p53, specifically lysine 305, also plays a critical role in fully revealing p53NES. We conclude that MDM2-mediated nuclear export of p53 depends on a series of ubiquitination-induced conformational changes in the p53 molecule that lead to the activation of p53NES. In addition, we demonstrate that the p53NES may be activated without necessarily disrupting the p53 tetramer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号