首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A 3.7 S binding protein for the steroid hormone and vitamin D metabolite 1 alpha-25-dihydroxyvitamin D (1,25-(OH)2-D) was observed in high salt cytosol extracts of chick embryo chorioallantoic membrane. The binding protein was characterized after partial purification of cytosol extracts by ammonium sulfate fractionation. The binding of 1,25-(OH)2-D was saturable, had a high affinity (Kd = 0.16 nM), and was specific for hormonally active vitamin D metabolites. Analysis of the displacement of [3H]1,25-(OH)2-D by unlabeled analogues showed the affinities of vitamin D metabolites to be in the order of 1,25-(OH)2-D = 1,24R,25-(OH)3-D much greater than 25-OH-D = 1-OH-D greater than 24R,25-(OH)2-D. Hormone binding was sensitive to pretreatment with sulfhydryl-blocking reagents. The chorioallantoic membrane 1,25-(OH)2-D-binding protein associated with the chromatin fraction after homogenization of membranes in low salt buffer, and bound to DNA-cellulose columns, eluting as a single peak at 0.215 M KCl. These findings support identification of this 1,25-(OH)2-D-binding protein as a steroid hormone receptor, with properties indistinguishable from 1,25-(OH)2-D receptors in other chick tissues. The chorioallantoic membrane functions in the last third of embryonic development to reabsorb calcium from the eff shell for deposition in embryonic bone. 1,25-(OH)2-D binding activity in the chorioallantoic membrane increased 4- to 5-fold from day 12 to day 16 of incubation, immediately preceding the onset of shell reabsorption. This finding suggests that 1,25-(OH)2-D may act to regulate shell mobilization and transepithelial calcium transport by the chorioallantoic membrane. Finally, the similarity of shell mobilization to bone resorption, which is also stimulated by 1,25-(OH)2-D, suggests that the chorioallantoic membrane is a useful alternate model for the study of 1,25-(OH)2-D action on bone mineral metabolism.  相似文献   

2.
J K Addo  N Swamy  R Ray 《Steroids》1999,64(4):273-282
In this article, we describe the development of a general synthetic strategy to functionalize the C-6 position of vitamin D3 and its biologically important metabolites, i.e. 25-hydroxyvitamin D3 (25-OH-D3) and 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We employed Mazur's cyclovitamin D method to synthesize vitamin D3 analogs with several functionalities at the C-6 position. In addition, we synthesized 6-(3-hydroxypropyl) and 6-[(2-bromoacetoxy)propyl] derivatives of 25-OH-D3 15 and 16, respectively, and 6-(3-hydroxypropyl) derivative of 1,25(OH)2D3 17. Competitive binding assays of 15-17 with human serum vitamin D-binding protein showed that all these analogs specifically bound to this protein, although with significantly lower affinity than the 25-OH-D3, the strongest natural binder, but with comparable affinity with 1,25(OH)2D3, the hormone. On the other hand, 6-[3-hydroxypropyl], 1alpha,25-dihydroxyvitamin D3 17 did not show any specific binding for recombinant nuclear vitamin D receptor. These results indicated that the region containing the C-6 position of the parent seco-steroid [1,25(OH)2D3] may be an important recognition marker towards vitamin D receptor binding. Information, delineated in this article, will be important for evaluating structure-activity relationship in synthetic analogs of vitamin D and its metabolites.  相似文献   

3.
We have previously described a significant decrease in the positive cooperativity level and affinity of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] binding to its chick intestinal chromatin receptor induced in vitro by a physiological 10-fold molar excess of (24R)-25-dihydroxyvitamin D3 [24R,25(OH)2D3] [F. Wilhelm and A. W. Norman (1985) Biochem. Biophys. Res. Commun. 126, 496-501]. In this report, we have initiated a comparative study of the binding of 24R,25(OH)2[3H]D3 and 1,25(OH)2[3H]D3 to the the intestinal chromatin fraction obtained from vitamin D-replete birds. 24R,25(OH)2[3H]D3 specific binding to this chromatin fraction was characterized by a dissociation constant (Kd) of 34.0 +/- 6.4 nM, a positive cooperativity level (nH) of 1.40 +/- 0.13, and a capacity (Bmax) of 47 +/- 8 fmol/mg protein. The very low relative competitive index (RCI) of 24R,25(OH)2D3 (0.11 +/- 0.03%) for the 1,25(OH)2D3 binding site/receptor, as well as the inability of 1,25(OH)2D3 to displace 24R,25(OH)2D3 from its binding site at a physiological molar ratio of 1:10, strongly suggest the independence of 24R,25(OH)2D3 and 1,25(OH)2D3 binding sites. Stereospecificity of the 24R,25(OH)2D3 binding sites was attested by the displacement of only 45 +/- 6% of 24R,25(OH)2D3 specific binding by equimolar concentrations of 24S,25(OH)2D3. Collectively these results suggest the existence of a binding domain/receptor for 24,25(OH)2D3 in the chick intestine which is independent of the 1,25(OH)2D3 receptor.  相似文献   

4.
Both 25-epimers of (22E)-22-dehydro-1 alpha,25-dihydroxy-26-methylvitamin D3 [22-dehydro-26-methyl-1,25-(OH)2D3] were synthesized. The biological activity of these compounds was tested in binding affinity to chick intestinal receptor protein of 1 alpha,25-dihydroxy-vitamin D3 [1,25-(OH)2D3] and in stimulating for intestinal calcium transport and bone calcium mobilization with vitamin D-deficient rats. The relative potency of (25R)- and (25S)-22-dehydro-26-homo-1,25-(OH)2D3 and 1,25-(OH)2D3 in competing for the intestinal cytosolic binding was 1.7:1.5:1. A similar order of activity was observed on intestinal calcium transport and bone calcium mobilization. In the ability for stimulation of intestinal calcium transport, (25R)- and (25S)-22-dehydro-26-methyl-1,25-(OH)2D3 were about 3.6 and 2.1 times as active as 1,25-(OH)2D3, respectively. In bone calcium mobilization tests, (25R)- and (25S)-22-dehydro-26-methyl-1,25-(OH)2D3 were estimated to be 2.2 and 1.6 times as potent as 1,25-(OH)2D3, respectively.  相似文献   

5.
The binding of the natural and unnatural diastereoisomers 25-hydroxyvitamin D3-26,23-lactone and 1,25 dihydroxyvitamin D3-26,23-lactone to the vitamin D-binding protein (DBP) and 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] chick intestinal receptor have been investigated. Also, the biological activities, under in vivo conditions, of these compounds, in terms of intestinal calcium absorption (ICA) and bone calcium mobilization (BCM), in the chick are reported. The presence of the lactone ring in the C23-C26 position of the seco-steroid side chain increased two to three times the ability of both 25(OH)D3 and 1,25(OH)2D3 to displace 25(OH)[3H]D3 from the D-binding protein; however, the DBP could not distinguish between the various diastereoisomers. In contrast, the unnatural form (23R,25S) of the 25-hydroxy-lactone was found to be 10-fold more potent than the natural form, and the unnatural (23R,25S)1,25(OH)2D3-26,23-lactone three times more potent than the natural 1,25-dihydroxy-lactone in displacing 1,25(OH)2[3H]D3 from its intestinal receptor. While studying the biological activity of these lactone compounds, it was found that the natural form of the 25-hydroxy-lactone increased the intestinal calcium absorption 48 h after injection (16.25 nmol), while bone calcium mobilization was decreased by the same dose of the 25-hydroxy-lactone. The 1,25-dihydroxyvitamin D3-26,23-lactone in both its natural and unnatural forms was found to be active in stimulating ICA and BCM. These results suggest that the 25-hydroxy-lactone has some biological activity in the chick and that 1,25(OH)2D3-26,23-lactone can mediate ICA and BCM biological responses, probably through an interaction with 1,25-(OH)2D3 specific receptors in these target tissues.  相似文献   

6.
Cultured vascular smooth muscle cells (VSMC) derived from rat aorta were found to contain a specific receptor for 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. Its Kd (5.0 x 10(-11) M) and capacity (22.9 fmol/mg of cytosol protein) for 1,25-(OH)2D3, its sedimentation coefficient on a sucrose density gradient (3.2 S), its relative affinities for various vitamin D3 metabolites [1,25-(OH)2D3 greater than 25-hydroxyvitamin D3 greater than 24,25-dihydroxyvitamin D3 greater than vitamin D3] and its affinity for DNA-cellulose were similar to those reported for the 1,25-(OH)2D3 receptor in other tissues. 1,25-(OH)2D3 at concentrations of more than 10(-10) M caused dose-dependent enhancement of the proliferation of VSMC in DMEM with 10% FCS. 25-Hydroxyvitamin D3 stimulated the proliferation of VSMC only at its highest concentration tested (10(-6) M). These data show that 1,25-(OH)2D3 stimulates the proliferation of VSMC after its binding to a cytoplasmic receptor of the cells in vitro, and support the possibility that VSMC are target cells of the hormone.  相似文献   

7.
Synthesis of a C-24-epimeric mixture of 25-hydroxy-[26,27-3H]vitamin D2 and a C-24-epimeric mixture of 1,25-dihydroxy-[26,27-3H]vitamin D2 by the Grignard reaction of the corresponding 25-keto-27-nor-vitamin D2 and 1 alpha-acetoxy-25-keto-27-nor-vitamin D3 with tritiated methyl magnesium bromide is described. Separation of epimers by high-performance liquid chromatography afforded pure radiolabeled vitamins of high specific activity (80 Ci/mmol). The identities and radiochemical purities of 25-hydroxy-[26,27-3H[vitamin D2 and 1,25-dihydroxy-[26,27-3H]vitamin D2 D2 were established by cochromatography with synthetic 25-hydroxyvitamin D2 or 1,25-dihydroxyvitamin D2. Biological activity of 25-hydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the rat plasma binding protein for vitamin D compounds, and by its in vitro conversion to 1,25-dihydroxy-[26,27-3H]vitamin D2 by kidney homogenate prepared from vitamin D-deficient chickens. The biological activity of 1,25-dihydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the chick intestinal receptor for 1,25-dihydroxyvitamin D3.  相似文献   

8.
Using [3H]-26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (F6-1,25-(OH)2D3), we have examined its ability to bind to the 1,25-(OH)2D3 receptor, and the ability of the resulting complex to bind DNA. The binding sites for [3H]F6-1,25-(OH)2D3 in the chick intestinal receptor represented a limited number of saturable sites for which 1,25-(OH)2D3 competes. 1,25-Dihydroxyvitamin D3 is three times more active than F6-1,25-(OH)2D3 in displacing [3H]F6-1,25-(OH)2D3. By affinity chromatography using DNA-Sephadex, the [3H]F6-1,25-(OH)2D3 receptor complex eluted from the column in a single peak at 0.14 M KCl, while [3H]-1,25-(OH)2D3 receptor complex eluted at 0.13 M KCl. These results indicate that F6-1,25-(OH)2D3 and 1,25-(OH)2D3 recognize the same binding site of the receptor and that the F6-1,25-(OH)2D3 receptor complex binds DNA more tightly than the 1,25-(OH)2D3 receptor complex. We suggest that the higher binding affinity for DNA may contribute to the greater biological activity of F6-1,25-(OH)2D3.  相似文献   

9.
The binding of 25-hydroxy-[26,27-3H]vitamin D-3 and 25-hydroxy-[26,27-3H]vitamin D-2 to the vitamin D binding protein in the plasma of both rats and chicks has been studied. In the case of rats, sucrose density gradient analysis, competitive displacement, and Scatchard analysis demonstrate that 25-hydroxyvitamin D-3 and 25-hydroxyvitamin D-2 are bound equally well to the vitamin D binding protein. In contrast, 25-hydroxyvitamin D-2 is poorly bound, while 25-hydroxyvitamin D-3 is tightly bound to the vitamin D binding protein in chick plasma. On the other hand, the chick intestinal receptor binds 1,25-dihydroxyvitamin D-2 and 1,25-dihydroxyvitamin D-3 equally well with a KD of 7.10(-11) M for both compounds. These results strongly suggest that the failure of the plasma transport protein in chicks to bind the vitamin D-2 compounds may be responsible for their relative ineffectiveness in these animals.  相似文献   

10.
Two new metabolites of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], namely 1,25(OH)2-24-oxo-vitamin D3 and 1,23,25(OH)3-24-oxo-vitamin D3, have been prepared in vitro using chick intestinal mucosal homogenates. To investigate the binding of 1,25(OH)2-[23-3H]-24-oxo-D3 and 1,23,25(OH)3-[23-3H]-24-oxo-D3 to the chick intestinal receptor we have isolated both metabolites in radioactive form using an incubation system containing 1,25(OH)2-[23,24-3H))-D3 with a specific radioactivity of 5.6 Ci/mmol. Both metabolites were highly purified by using Sephadex LH-20 chromatography followed by high-pressure liquid chromatography (HPLC). Sucrose density gradient sedimentation analysis showed specific binding of both tritium-labeled metabolites to the chick intestinal cytosol receptor. Experiments were carried out to determine the relative effectiveness of binding to the chick intestinal mucosa receptor for 1,25(OH)2D3. The results are expressed as relative competitive index (RCI), where the RCI is defined as 100 for 1,25(OH)2D3. Whereas the RCI obtained for 1,25(OH)2-24-oxo-D3 was 98 +/- 2 (SE), the RCI for 1,23,25(OH)3-24-oxo-D3 was only 28 +/- 6 (SE). Also, the biological activity of both new metabolites was assessed in vivo in the chick. In our assay for intestinal calcium absorption, 1,25(OH)2-24-oxo-D3 was active at a dose level of 1.63 and 4.88 nmol/bird (at 14 h), whereas 1,23,25(OH)3-24-oxo-D3 showed only weak biological activity in this system. In our assay for bone calcium mobilization, administration of both new metabolites showed modest activity at the 4.88-nmol dose level, which was reduced at the 1.63-nmol dose level. The results indicate that biological activity declines as 1,25(OH)2D3 is metabolized to 1,24R,25(OH)3D3, 1,25(OH)2-24-oxo-D3, and then 1,23,25(OH)3-24-oxo-D3.  相似文献   

11.
In the absence of vitamin D-binding protein (DBP), 1,25-(OH)2D3 at 10(-12) M significantly inhibited the [3H]thymidine incorporation in human lymphocytes during mixed lymphocyte cultures (MLC) or after phyto-hemaglutinin (PHA) stimulation. In the presence of a physiological concentration of DBP (5 x 10(-6) M), the concentration of 1,25-(OH)2D3 required for inhibition was 10(-10) M (for PHA-cultures) and 10(-9) M (for MLC). Several vitamin D analogs were compared for their inhibitory action on PHA stimulation. In the absence of DBP, the concentration necessary for 50% inhibition of [3H]thymidine incorporation ranged from 10(-12) M [1,25-(OH)2D3 and 24,24-F2-1,25-(OH)2D3], over 10(-10) M [1,24R, 25-(OH)3D3; 1,25S, 26-(OH)3D3 and 26,27-F6-1,25-(OH)2D3] and 10(-8) M [25 OHD3 and 24,25-(OH)2D3] to 10(-6) M [calcitriol-lactone]. This rank order correlates with the binding affinity of the various analogs to the cytoplasmic 1,25-(OH)2D3-receptor. DBP counteracted the inhibitory effect of all analogs and the degree of counteraction was directly proportional to the binding affinity between DBP and the vitamin D analog. DBP thus decreased the in vitro inhibitory action of 1,25-(OH)2D3 and its analogs on lymphocyte proliferation. Of all analogs tested, only 1,25-(OH)2D3 had a significant effect at a physiological concentration.  相似文献   

12.
A consequence of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) action in kidney is the enhanced production of 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3). We have studied this apparent induction phenomenon in two established mammalian cell lines of renal origin. A porcine kidney cell line, LLC-PK1, was found to possess typical receptors for 1,25-(OH)2D3 which sediment at 3.3 S and bind to immobilized DNA. Saturation analysis of LLC-PK1 cell cytosol revealed an equilibrium binding constant (Kd) for 1,25-(OH)2D3 of 7.8 X 10(-11) M and a concentration of 5400 binding sites/cell. In the presence of serum, intact LLC-PK1 cells also internalize and bind 1,25-(OH)2D3. In contrast, a monkey kidney cell line, LLC-MK2, was found to contain a negligible concentration of the 1,25-(OH)2D3 receptor by all criteria examined. However, both renal cell lines respond to 1,25-(OH)2D3 with a 2- to 20-fold increase in basal levels of 25-hydroxyvitamin D3-24-hydroxylase (24-hydroxylase) activity. Incubation of viable cell suspensions with 25-hydroxy[26,27-3H]vitamin D3 (0.5 microM) at 37 degrees C for 30 min followed by subsequent analysis of lipid extracts via high performance liquid chromatography was carried out to assess 24,25-(OH)2[3H]D3 formation. Enzyme induction was found to be specific for 1,25-(OH)2D3 in both cell lines with half-maximal stimulation of 24-hydroxylase activity observed at 0.2 and greater than or equal to 1.0 nM 1,25-(OH)2D3 in LLC-PK1 and LLC-MK2, respectively. The response in LLC-PK1 was more rapid (1-4 h) than in LLC-MK2 (4-8 h) following 1,25-(OH)2D3 treatment of cultures in situ. In both cell lines, actinomycin D abolished the 1,25-(OH)2D3-dependent increase in 24-hydroxylase activity. Our results suggest that the high affinity 1,25-(OH)2D3 receptor may not be required for 1,25-(OH)2D3-dependent induction of renal 24-hydroxylase activity. Alternatively, LLC-MK2 cells could contain an atypical form of the 1,25-(OH)2D3 receptor protein which retains functionality but escapes detection by standard binding techniques.  相似文献   

13.
We have studied the binding of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] to its crude chromatin chick intestinal receptor in the absence or presence of a ten-fold excess of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] for each concentration of [3H]-1,25(OH)2D3 studied. We have found a significant shift to the right in the binding of 1,25(OH)2D3 to its receptor in the presence of this excess of 24R,25(OH)2D3. As a result, the affinity was found to be significantly reduced, the apparent dissociation constants varied from 0.97 +/- 0.09 (n = 5) to 1.36 +/- 0.04 nM (p less than 0.01). This reduction was related to a significant decrease in the positive cooperativity for the apparent Hill coefficient from nH = 1.49 +/- 0.06 to nH = 1.26 +/- 0.06 (p less than 0.03) in the binding of 1,25(OH)2D3 to its receptor. There was no significant change in the capacity of the receptor (189 +/- 11 compared to 200 +/- 9 fmoles/mg protein). These results suggest that the intestinal 1,25(OH)2D3 receptor must also have a binding recognition site for 24R,25(OH)2D3 which is postulated to play a regulatory role in the 1,25(OH)2D3 receptor's ligand binding properties.  相似文献   

14.
Nemere I  Campbell K 《Steroids》2000,65(8):451-457
The effect of vitamin D status on levels of the putative 1, 25(OH)(2)D(3) membrane receptor (pmVDR) was studied in chick intestine, kidney, and brain. Western analyses and assays for specific [(3)H]1,25(OH)(2)D(3) binding indicated that, in intestine, pmVDR levels were greatest in -D chicks relative to +1,25D and +D animals (P < 0.05). In kidney, protein levels and specific binding followed the order +D > +1,25D, -D. In brain, vitamin D status did not affect protein levels or specific binding levels. In tissue from normal chicks, both protein and specific binding followed the order of intestine > kidney > brain membranes. Intestinal cells were further evaluated for the effect of 1,25(OH)(2)D(3) on selected "rapid responses." Extrusion of (45)Ca in response to 130 pM 1, 25(OH)(2)D(3) in vitro was greater in cells from -D chicks than from +1,25D or normal birds. Analyses of signal transduction events revealed diminished hormone-induced intracellular calcium oscillations (as assessed by fura-2 fluorescence), and lack of steroid-enhanced protein kinase (PK) A activity in intestinal epithelial cells from -D chicks relative to +D chicks. PK C activation by 130 pM 1,25(OH)(2)D(3) was approximately twofold in cells from +D or -D chicks. The combined results indicate that vitamin D status differentially affects the pmVDR in intestine, kidney, and brain. In intestine, vitamin D deficiency differentially affects (45)Ca handling, intracellular calcium oscillations, PK A and PK C activities in response to 1,25(OH)(2)D(3).  相似文献   

15.
The active form of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 (1,25-(OH)2-D3), suppresses in vitro immunoglobulin (Ig) production by activated peripheral blood mononuclear cells (PBM) from normal human subjects by inhibiting T helper/inducer TH cell activity. Normal PBM were fractionated into B, TH and T suppressor/cytotoxic (Ts) cells by fluorescence-activated cell sorting techniques. The resultant subsets were activated with mitogens and were cultured in the presence or absence of a receptor-saturating concentration of 1,25-(OH)2-D3. The sterol reduced [3H]thymidine incorporation in TH cells by 56%, with no effect on Ts or B cells. When 1,25-(OH)2-D3-treated TH cells were co-cultured with untreated B cells and culture supernatants assayed for Ig production, 1,25-(OH)2-D3 abrogated the inducing effect of TH cells on Ig synthesis by B cells. There was no inhibitory effect of the sterol on Ts or B cell activity. In addition, 1,25-(OH)2-D3 produced a dramatic inhibition of interleukin 2 (IL 2) production by activated PBM, but did not inhibit IL 2 receptor generation by these cells. Other vitamin D metabolites tested did not produce this effect. These results suggest that the TH lymphocyte is the specific cellular target for the immunoinhibitory effects of 1,25-(OH)2-D3.  相似文献   

16.
Cytosols from cultured myoblast cells (G-8 and H9c2) prepared in high salt (0.3 M KCl) possesses receptor like proteins for 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) that sediment in the 3.2 S region of sucrose gradients. These receptors were characterized as having high affinity (Kd less than 0.1 nM) for 1,25-(OH)2D3 and are in low capacity (less than 80 fmol/mg of cytosol protein). Analog competition for receptor binding revealed that 1,25-(OH)2D3 was more potent than 24,25-(OH)2D3, or 25-(OH)2D3 for displacement of 1,25-(OH)2[3H]D3 from these 3.2 S region sedimenting receptors. Furthermore, the receptor proteins had affinity for DNA and eluted from Sephacryl S-200 as a macromolecule with Stokes radius (Rs) of 32 A. High salt cytosol from collagenase-dispersed skeletal muscle cells was also found to possess a 3.2 S 1,25-(OH)2D3 receptor-like protein. The 1,25-(OH)2D3 receptor concentration in both G-8 and H9c2 myoblast lines was found to down-regulate by 50-70% when cells were stimulated to differentiate to myotubes by lowering fetal calf serum to 5% of the medium. Moreover, we demonstrated that 1,25-(OH)2D3 can inhibit DNA synthesis and cell proliferation of the G-8 myoblast cells in a dose-dependent manner. 1,25-(OH)2D3 was more potent at inhibiting cell proliferation in cells grown in 5% serum than in 20% serum. The data suggest that 1,25-(OH)2D3 can act directly on muscle myoblast via a 1,25-(OH)2D3 receptor that is similar to those found in intestine and bone. The data support the possibility that muscle is a target tissue for 1,25-(OH)2D3 and the hormone may act to initiate terminal differentiation of myoblast cells.  相似文献   

17.
We describe herein two different effects of protease inhibitors and substrates on receptors for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) obtained from the intestinal mucosa of vitamin D-deficient chicks: inhibition of binding of 1,25(OH)2D3 to its receptor and stabilization of the receptor. Both L-1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK), a chymotrypsin inhibitor, and N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), a trypsin inhibitor, block [3H]1,25(OH)2D3 binding to the receptor. Fifty per cent inhibition of binding occurs at 20 microM TPCK, and 100% inhibition at 100-200 microM; TLCK is about 25-fold less effective. At higher concentrations (10-100 mM), the chymotrypsin substrates N alpha-p-tosyl-L-arginine methyl ester and tryptophan methyl ester and the cathepsin B inhibitor leupeptin also inhibit [3H] 1,25(OH)2D3 binding to its receptor. Different inhibitors and substrates interact with the receptor differently: TPCK (20 microM) and N alpha-p-tosyl-L-arginine methyl ester (10 mM) are reversible, noncompetitive inhibitors, L-tryptophan methyl ester (20 mM) is a reversible competitive inhibitor, and phenylmethylsulfonyl fluoride (300 microM) shows no effect on [3H]1,25(OH)2D3 binding to its receptor. The most stable form of unoccupied 1,25(OH)2D3 receptors from chick intestinal mucosa was that obtained from a low salt chromatin preparation (t 1/2 = 6.0 h). The presence of KCl drastically decreased receptor stability (t 1/2 = 1.8 h); and the addition of 2.5 mM CaCl2 further reduced their stability. Phenylmethylsulfonyl fluoride and Trasylol inhibited the KCl-induced receptor instability, but did not prevent the additional instability in the presence of CaCl2. In summary, TPCK and TLCK exert direct effects on the 1,25(OH)2D3 receptor molecule, independent of their protease inhibitor function. These compounds may prove useful as covalent affinity labels for the receptor. On the other hand, phenylmethylsulfonyl fluoride and Trasylol stabilize 1,25(OH)2D3 receptors, probably via inhibition of KCl-activated nuclear protease(s). This receptor stabilization will be advantageous in receptor assays and/or purification procedures.  相似文献   

18.
The effect of vitamin D3 status upon the responsiveness of chick intestinal epithelium to exogenous 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] was studied. Intestinal calbindin [A recent consensus decision was made to redesignate the vitamin D-dependent calcium binding protein as "calbindin-D28K" (R.H. Wasserman (1985) in Vitamin D: Chemical, Biochemical, and Clinical Update (Norman, A.W., Schaefer, K., Grigoleit, H.-G., and Herrath, D.V., Eds.), pp. 321-322, de Gruyter, Berlin/New York).] protein and intestinal calbindin mRNA were quantitated in birds which had been raised on a vitamin D3-deplete (-D) or on a vitamin D3-replete (+D) diet. 1,25(OH)2D3 stimulated intestinal calbindin mRNA levels in -D chickens in a proportional dose-dependent manner, when measured at both 12 and 48 h after administration of the hormone. A first increase was observed with 1,25(OH)2D3 concentrations between 0.065 and 0.65 nmol. The maximal stimulation achieved by 1,25(OH)2D3 (6.5-18 nmol) in -D tissue was approximately 10-fold over the calbindin mRNA levels present in vehicle-treated birds. The increase of calbindin mRNA in -D birds was associated with a similar dose-dependent increase in calbindin protein in 1,25(OH)2D3-treated -D birds after 12 or 48 h. In +D intestine, while exogenous 1,25(OH)2D3 also increased calbindin mRNA levels in a dose-dependent fashion, the maximal stimulation observed after 5 h (1.2- to 2-fold) was clearly less than that observed in -D intestine. In contrast to -D birds, intestinal calbindin levels in +D birds were decreased by administration of exogenous 1,25(OH)2D3. Administration of 32.5 to 65 nmol 1,25(OH)2D3 resulted in an approximately 1.8-fold repression compared to vehicle-treated birds. This differential responsiveness between +D and -D intestines with respect to 1,25(OH)2D3 was not explained either by differences in the uptake in the chromatin fractions of these tissues or by metabolism of radiolabeled 1,25(OH)2D3. Dietary withdrawal of vitamin D3 led to a gradual decline in ambient intestinal calbindin levels, while intestinal sensitivity to 1,25(OH)2D3 was restored. These findings suggest that vitamin D3 status regulates intestinal responsiveness to the seco-steroid 1,25(OH)2D3.  相似文献   

19.
The biological activity and the binding affinity for the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] intestinal receptor of a new fluorine-containing vitamin D compound, namely 6-fluoro-vitamin D3 (6-F-D3), is reported. A significant interaction of 6-F-D3 with the 1,25(OH)2D3 receptor was found, with a relative competitive index (RCI) of 0.26 +/- 0.04, which is intermediate between 25-hydroxyvitamin D3 (0.14 +/- 0.01) and 1 alpha-hydroxyvitamin D3 (0.46 +/- 0.08), where the RCI of 1,25(OH)2D3 is defined to be 100. In contrast, vitamin D3 was unable to interact with the 1,25(OH)2D3 receptor. Also, the biological activity of 6-F-D3 was assessed in vivo in the vitamin D-deficient chick. 6-F-D3 at doses up to 130 nmol displayed no biological action on either intestinal calcium absorption (ICA) or bone calcium mobilization (BCM) over the time interval of 14-48 h after dosing. However, when 130 nmol 6-F-D3 was given 2 h before and 6 h after vitamin D3 (1.62 nmol), a significant inhibition of vitamin D-mediated ICA was noted. Also, a dose of 130 nmol 6-F-D3 given 2 h before and 6 h after 1,25(OH)2D3 (0.26 nmol) significantly inhibited ICA, as measured at 12 h. 6-F-D3 is the first vitamin D analog found which has an ability to both bind to the 1,25(OH)2D3 receptor and to antagonize the production of biological responses by 1,25(OH)2D3.  相似文献   

20.
The development of 1,25-(OH)2D3 receptor in the duodenal cytosol of chick embryo was studied by the sucrose density gradient analysis. The binding profile for 1,25-(OH)2D3 in the cytosol of vitamin D-deficient chick duodenum on the sucrose density gradient revealed 3 binding components, and the sedimentation constant was estimated as 2.5, 3.5 and 5.5S respectively. The 3.5S binding component has high affinity and low capacity for 1,25-(OH)2D3 and is thought to be 1,25-(OH)2D3 receptor. During the development of chick embryo, the 3.5S binding component was not detected in 13-day embryonic duodenum, it appeared on 15th day of incubation and then gradually increased to the level of vitamin D-deficient chick on 19th day of incubation. The 5.5S binding component was specific for 25-OH-D3 and it was found even in 13-day embryo, but it did not show any significant change during development. On the other hand, the 2.5S component was not specific for either 1,25-(OH)2D3 or 25-OH-D3. However, it was main binding component in early stages of development and decreased during development. From these results, it is suggested that the receptor for 1,25-(OH)2D3 is available a few days before hatching and the inability to produce CaBP in the duodenum of chick embryo could not be ascribed to the absence of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号