首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
1 alpha,25-Dihydroxyvitamin D3-26,23-lactone [1 alpha,25(OH)2D3-26,23-lactone] was compared to 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] in terms of their stimulation, in vivo, of intestinal calcium transport and mobilization of calcium from bone in the rat (the two classic vitamin D-mediated responses), and their relative binding to the chick intestinal receptor for 1 alpha,25(OH)2D3, 1 alpha,25-(OH)2D3-26,23-lactone was found to be only one-thirtieth as active as 1 alpha,25-(OH)2D3 in the stimulation of intestinal calcium transport and was found to mediate a significant reduction in the steady-state serum calcium levels. Associated with the reduction in serum calcium was a significant increase in urinary calcium excretion for 24 h after the administration of the steroid. Prior administration of 1 alpha,25(OH)2D3-26,23-lactone partially blocked the actions of a subsequently administered dose of 1 alpha,25(OH)2D3 in increasing serum calcium levels, but did not affect the action of 1 alpha,25(OH)2D3 in stimulating intestinal calcium transport. The binding affinity of 1 alpha,25(OH)2D3-26,23-lactone to the chick intestinal cytosol receptor protein was observed to be 670 times lower than that of 1,25-(OH)2D3 which indicates that perturbation of the 25-hydroxylated side chain by formation of the 26,23-lactone causes a significant reduction in ligand affinity for the receptor.  相似文献   

2.
All four possible diastereoisomers of 1 alpha,25-dihydroxycholecalciferol-26,23-lactone (1 alpha,25-(OH)2D3-26,23-lactone) were chemically synthesized and were compared to 1 alpha,25-dihydroxycholecalciferol (1 alpha,25(OH)2D3) in terms of their stimulation, in vivo, of intestinal calcium transport and mobilization of calcium from bone in vitamin D-deficient rats (the two classic vitamin D-mediated responses), and their relative binding to the chick intestinal cytosol receptor for 1 alpha,25-(OH)2D3. The receptor binding affinity results are expressed as relative competitive index (RCI), where the RCI is defined as 100 for 1 alpha,25(OH)2D3. The RCI obtained for 23(S)25(S)-1 alpha,25(OH)2D3-26,23-lactone was 7.90, for 23(R)25(R)-1 alpha,25(OH)2D3-26,23-lactone was 2.27, 23(S)25(R)-1 alpha,25(OH)2D3-26,23-lactone was 0.17, for 23(R)25(S)-1 alpha,25(OH)2D3-26,23-lactone 0.22 and for the in vivo produced 1 alpha,25(OH)2D3-26,23-lactone the RCI was only 0.17. Also the four diastereoisomers of 1 alpha,25(OH)2D3-26,23-lactone all stimulated intestinal calcium transport, reaching a maximum 8 h after administration. Compared with the stimulation of intestinal calcium transport by 1 alpha,25(OH)2D3, 23(S)25(S)-1 alpha,25(OH)2D3-26,23-lactone was 1/4 as effective, 23(R)25(R)-1 alpha,25(OH)2D3-26,23-lactone was 1/20 as effective, 23(S)25(R)-1 alpha,25(OH)2D3-26,23-lactone was 1/74 as effective and 23(R)25(S)-1 alpha,25(OH)2D3-26,23-lactone was 1/53 as effective. Similarly, 23(S)25(S)-1 alpha,25(OH)2D3-26,23-lactone and 23(R)25(R)-1 alpha,25(OH)2D3-26,23-lactone were estimated to be 3 and 20 times less active than 1 alpha,25-(OH)2D3 in elevation of serum calcium. However, 23(S)25(R)-1 alpha,25(OH)2D3-26,23-lactone and 23(R)25(S)-1 alpha,25(OH)2D3-26,23-lactone decreased the serum calcium levels 24 h after administration. 23(S)25(R)-1 alpha,25(OH)2D3-26,23-lactone reduced serum calcium concentrations to a greater extent than 23(R)25(S)-1 alpha,25(OH)2D3-26,23-lactone. These results indicate that the biological activities of the diastereoisomers of 1 alpha,25(OH)2D3-26,23-lactone were quite different among four stereochemical configurations.  相似文献   

3.
Four possible diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were chemically synthesized and compared with the natural metabolite by high-pressure liquid chromatography. The four synthetic diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone could be separated into three peaks by high-pressure liquid chromatography. The naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum and in vitro incubation of chick kidney homogenates comigrated with 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. The four diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were tested against naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone to determine their relative competition in the 1 alpha,25-dihydroxyvitamin D3-specific cytosol receptor binding assay for 1 alpha,25-dihydroxyvitamin D3. 23(S)25(S)-1 alpha,25-Dihydroxyvitamin D3-26,23-lactone was the best competitor followed by 23(R)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone and 23(R)25(S)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone, and 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was the poorest competitor. Natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum had almost the same binding affinity as that of 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. These data unequivocally demonstrate that the stereochemistry of the natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone has the 23(S) and 25(R) configuration.  相似文献   

4.
The biological activity and the binding affinity for the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] intestinal receptor of a new fluorine-containing vitamin D compound, namely 6-fluoro-vitamin D3 (6-F-D3), is reported. A significant interaction of 6-F-D3 with the 1,25(OH)2D3 receptor was found, with a relative competitive index (RCI) of 0.26 +/- 0.04, which is intermediate between 25-hydroxyvitamin D3 (0.14 +/- 0.01) and 1 alpha-hydroxyvitamin D3 (0.46 +/- 0.08), where the RCI of 1,25(OH)2D3 is defined to be 100. In contrast, vitamin D3 was unable to interact with the 1,25(OH)2D3 receptor. Also, the biological activity of 6-F-D3 was assessed in vivo in the vitamin D-deficient chick. 6-F-D3 at doses up to 130 nmol displayed no biological action on either intestinal calcium absorption (ICA) or bone calcium mobilization (BCM) over the time interval of 14-48 h after dosing. However, when 130 nmol 6-F-D3 was given 2 h before and 6 h after vitamin D3 (1.62 nmol), a significant inhibition of vitamin D-mediated ICA was noted. Also, a dose of 130 nmol 6-F-D3 given 2 h before and 6 h after 1,25(OH)2D3 (0.26 nmol) significantly inhibited ICA, as measured at 12 h. 6-F-D3 is the first vitamin D analog found which has an ability to both bind to the 1,25(OH)2D3 receptor and to antagonize the production of biological responses by 1,25(OH)2D3.  相似文献   

5.
The metabolic pathway from 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] to 1 alpha,25-dihydroxyvitamin D3-26,23-lactone includes the formation of 1 alpha,23,25-26-tetrahydroxyvitamin D3 [1 alpha,23,25,26-(OH)4D3]. The aim of the current study was to explore the as yet unknown biological properties of this vitamin D3 sterol. The four diastereoisomers of 1 alpha,23,25,26-(OH)4D3 were chemically synthesized. They were compared to 1 alpha,25-(OH)2D3 in terms of their affinity for the chick intestinal 1 alpha,25-(OH)2D3 receptor and their biologic activity in vivo (stimulation of intestinal calcium absorption and mobilization of calcium from bone in vitamin D-deficient rats). The 1,25-(OH)2D3 receptor binding affinities of 1 alpha,23(R)25(R)26-(OH)4D3, 1 alpha,23(S)25(S)26-(OH)4 D3, 1 alpha,23(S)25(R)26-(OH)4D3, and 1 alpha,23(R)25(S)26-(OH)4D3 were 11, 100, 216, and 443 times weaker than the binding affinity of 1 alpha,25-(OH)2D3, respectively. Compared to 1 alpha,25-(OH)2D3, the relative capacities of the 1 alpha,23,25,26-(OH)4D3 compounds to stimulate intestinal calcium absorption were 1/4 for 1 alpha,23(R)25(R)26-(OH)4D3; 1/19 for 1 alpha,23(S)25(S)26-(OH)4D3; 1/90 for 1 alpha,23(S)25(R)26-(OH)4D3; and 1/136 for 1 alpha,23(R)25(S)26-(OH)4D3. Maximal stimulation of intestinal calcium transport occurred 8 h after administration of vitamin D3 metabolites. Mobilization of calcium from bone was quantitated by serum calcium concentration measurements. The activities of 1 alpha,23(R)25(R)26-(OH)4D3, 1 alpha,23(S)25(S)26-(OH)4D3, 1 alpha,23(S)25(R)26-(OH)4D3, and 1 alpha,23(R)25(S)26-(OH)4D3 to increase serum calcium were estimated to be 4, 13, 43, and 69 times weaker than that of 1 alpha,25-(OH)2D3, respectively. These results illustrate the stereospecificity of the chicken intestine 1 alpha,25-(OH)2D3 receptor for binding of 1 alpha,23,25,26-(OH)4D3 and suggest that the 1 alpha,23,25,26-(OH)4D3 exerts its biological activity in the rat through an interaction with 1,25-(OH)2D3 receptors. In summary, the 1 alpha,23,25,26-(OH)4D3 had a markedly lower biological activity than 1 alpha,25-(OH)2D3.  相似文献   

6.
Two new metabolites of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], namely 1,25(OH)2-24-oxo-vitamin D3 and 1,23,25(OH)3-24-oxo-vitamin D3, have been prepared in vitro using chick intestinal mucosal homogenates. To investigate the binding of 1,25(OH)2-[23-3H]-24-oxo-D3 and 1,23,25(OH)3-[23-3H]-24-oxo-D3 to the chick intestinal receptor we have isolated both metabolites in radioactive form using an incubation system containing 1,25(OH)2-[23,24-3H))-D3 with a specific radioactivity of 5.6 Ci/mmol. Both metabolites were highly purified by using Sephadex LH-20 chromatography followed by high-pressure liquid chromatography (HPLC). Sucrose density gradient sedimentation analysis showed specific binding of both tritium-labeled metabolites to the chick intestinal cytosol receptor. Experiments were carried out to determine the relative effectiveness of binding to the chick intestinal mucosa receptor for 1,25(OH)2D3. The results are expressed as relative competitive index (RCI), where the RCI is defined as 100 for 1,25(OH)2D3. Whereas the RCI obtained for 1,25(OH)2-24-oxo-D3 was 98 +/- 2 (SE), the RCI for 1,23,25(OH)3-24-oxo-D3 was only 28 +/- 6 (SE). Also, the biological activity of both new metabolites was assessed in vivo in the chick. In our assay for intestinal calcium absorption, 1,25(OH)2-24-oxo-D3 was active at a dose level of 1.63 and 4.88 nmol/bird (at 14 h), whereas 1,23,25(OH)3-24-oxo-D3 showed only weak biological activity in this system. In our assay for bone calcium mobilization, administration of both new metabolites showed modest activity at the 4.88-nmol dose level, which was reduced at the 1.63-nmol dose level. The results indicate that biological activity declines as 1,25(OH)2D3 is metabolized to 1,24R,25(OH)3D3, 1,25(OH)2-24-oxo-D3, and then 1,23,25(OH)3-24-oxo-D3.  相似文献   

7.
Both 25-epimers of (22E)-22-dehydro-1 alpha,25-dihydroxy-26-methylvitamin D3 [22-dehydro-26-methyl-1,25-(OH)2D3] were synthesized. The biological activity of these compounds was tested in binding affinity to chick intestinal receptor protein of 1 alpha,25-dihydroxy-vitamin D3 [1,25-(OH)2D3] and in stimulating for intestinal calcium transport and bone calcium mobilization with vitamin D-deficient rats. The relative potency of (25R)- and (25S)-22-dehydro-26-homo-1,25-(OH)2D3 and 1,25-(OH)2D3 in competing for the intestinal cytosolic binding was 1.7:1.5:1. A similar order of activity was observed on intestinal calcium transport and bone calcium mobilization. In the ability for stimulation of intestinal calcium transport, (25R)- and (25S)-22-dehydro-26-methyl-1,25-(OH)2D3 were about 3.6 and 2.1 times as active as 1,25-(OH)2D3, respectively. In bone calcium mobilization tests, (25R)- and (25S)-22-dehydro-26-methyl-1,25-(OH)2D3 were estimated to be 2.2 and 1.6 times as potent as 1,25-(OH)2D3, respectively.  相似文献   

8.
9.
A study has been made in the chick of the stereostructural requirements of A-ring-functionalized vitamin D analogs which elicit vitamin D3 and 1,25-(OH)2D3-dependent biological responses of intestinal calcium absorption (ICA) and bone calcium mobilization (BCM). Ring expansion of vitamin D3 to produce (1S,4S), (1S,4R), or (1R,4S)-(7E)-1,4-dihydroxy-3-deoxy-A-homo-19-nor-9,10-secocholesta-5,7-dienes resulted in the loss of both ICA and BCM biological activity at dose levels of steroid of up to 650 nmol/0.1 kg birds. Accordingly the three A-homo analogs of vitamin D3 were assessed for their ability to inhibit or increase the ICA or BCM responses of D3 and 1,25-(OH)2D3. Only (1R,4S)-(7E)-diol-C, maintaining a cis-β,β-hydroxyl orientation showed antagonistic biological activity. Intraperitoneal doses (65–325 nmol) of diol-C administered in conjunction with D3 (0.8–3.25 nmol) inhibited the BCM responses selectively and had no effect on the ICA response. Doses of analog-C (16.3-3.25 nmol) injected before and after the active hormone 1,25-(OH)2D3 (0.13–01.30 nmol) stimulated the ICA response of the latter above its normal levels (a synergistic response) when administered alone.  相似文献   

10.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

11.
The present study was carried out in order to elucidate the metabolic pathway from 1 alpha,25-(OH)2D3 to 1 alpha,25-(OH)2D3-26,23-lactone. For that purpose, we stereospecifically synthesized the vitamin D3 derivatives 1 alpha,23(S),25-(OH)3D3, 1 alpha,23(S),25(R),26-tetrahydroxyvitamin D3, and 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-lactol. The in vitro metabolism of these compounds was examined in kidney homogenates and intestinal mucosa homogenates from 1 alpha,25-(OH)2D3-supplemented chicks. The naturally occurring 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was produced (in increasing amounts) from 1 alpha,25-(OH)2D3, 1 alpha,25(R),26-(OH)3D3, 1 alpha,23(S),25-(OH),D3, 1 alpha,23(S),25(R),26-(OH)4D3, and 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol. These results indicated that there are two possible metabolic pathways from 1 alpha,25-(OH)2D3 to 1 alpha,23(S),25(R),26-(OH)4D3: the major one is by way of 1 alpha,23(S),25-(OH)3D3 and the minor one is by way of 1 alpha,25(R),26-(OH)3D3. 1 alpha,23(S),25(R),26-Tetrahydroxyvitamin D3 is further metabolized to 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone via 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactol. In the course of our studies, a new biosynthetic vitamin D3 metabolite was isolated in pure form. This metabolite was identified as 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol by UV spectrophotometry and mass spectrometry. Furthermore, we establish in this report that the lactonization of 1 alpha,23,25,26-(OH)4D3 and 1 alpha,25-(OH)2D3-26,23-lactol occurs in a stereo-retained and stereo-selective fashion.  相似文献   

12.
Vitamin D compounds added to the culture medium induce differentiation of human myeloid leukemia cells (HL-60 cells) by binding to a specific cytosol receptor protein. This system provides a biologically relevant and technically simple assay to examine the relationship between molecular structure and biological activity of vitamin D compounds. Using this culture system, the biological activity of 24,24-F2-1 alpha,25(OH)2D3 and 1 alpha,25(OH)2D3-26,23-lactone was assayed. 24,24-F2-1 alpha,25(OH)2D3 was four to seven times more potent than 1 alpha,25(OH)2D3 in inducing phagocytosis and C3 rosette formation of HL-60 cells, though both compounds bound equally well to the cytosol receptor, suggesting that the defuorination at the 24-carbon position may stimulate membrane permeability of the compound. 1 alpha,25(OH)2D3-26,23-lactone, on the other hand, was only 1/200th as active as 1 alpha,25(OH)2D3. The binding affinity of the lactone for the cytosol receptor was identical with that of 1 alpha (OH)D3, suggesting that the lactone formation between the 26 and 23 positions masks the function of the 25-hydroxyl group. The binding affinity of vitamin D3 derivatives to the specific cytosol receptor of HL-60 cells was well correlated with that of intestinal cytosol protein specifically bound to 1 alpha,25(OH)2D3.  相似文献   

13.
We synthesized 3 beta-thiovitamin D3 from 7-dehydrocholesterol and tested its biological activity and protein binding properties. The thiovitamin was found to be a weak vitamin D agonist at high doses in vivo. It was poorly bound by both vitamin D-binding protein as well as by the intestinal cytosol receptor for 1,25-dihydroxyvitamin D. It did not increase the synthesis of calcium binding protein in the chick embryonic duodenum and did not block the activity of 1,25-dihydroxyvitamin D3 in this system. We conclude that 3 beta-thiovitamin D3 is a weak vitamin D agonist in vivo with no agonist activity or antagonist activity to 1,25-dihydroxyvitamin D3 in the chick embryonic duodenum.  相似文献   

14.
We have previously described a significant decrease in the positive cooperativity level and affinity of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] binding to its chick intestinal chromatin receptor induced in vitro by a physiological 10-fold molar excess of (24R)-25-dihydroxyvitamin D3 [24R,25(OH)2D3] [F. Wilhelm and A. W. Norman (1985) Biochem. Biophys. Res. Commun. 126, 496-501]. In this report, we have initiated a comparative study of the binding of 24R,25(OH)2[3H]D3 and 1,25(OH)2[3H]D3 to the the intestinal chromatin fraction obtained from vitamin D-replete birds. 24R,25(OH)2[3H]D3 specific binding to this chromatin fraction was characterized by a dissociation constant (Kd) of 34.0 +/- 6.4 nM, a positive cooperativity level (nH) of 1.40 +/- 0.13, and a capacity (Bmax) of 47 +/- 8 fmol/mg protein. The very low relative competitive index (RCI) of 24R,25(OH)2D3 (0.11 +/- 0.03%) for the 1,25(OH)2D3 binding site/receptor, as well as the inability of 1,25(OH)2D3 to displace 24R,25(OH)2D3 from its binding site at a physiological molar ratio of 1:10, strongly suggest the independence of 24R,25(OH)2D3 and 1,25(OH)2D3 binding sites. Stereospecificity of the 24R,25(OH)2D3 binding sites was attested by the displacement of only 45 +/- 6% of 24R,25(OH)2D3 specific binding by equimolar concentrations of 24S,25(OH)2D3. Collectively these results suggest the existence of a binding domain/receptor for 24,25(OH)2D3 in the chick intestine which is independent of the 1,25(OH)2D3 receptor.  相似文献   

15.
23,23-Difluoro-25-hydroxyvitamin D3 is 5-10 times less active than 25-hydroxyvitamin D3 in stimulating intestinal calcium transport, bone calcium mobilization, increasing serum phosphorus, mineralization of rachitic bone, and binding to the plasma transport protein in rats. It is converted to 23,23-difluoro-1 alpha, 25-dihydroxyvitamin D3 by chick renal 25-hydroxyvitamin D-1-hydroxylase. This compound is one-seventh as active as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal receptor for 1,25-dihydroxyvitamin D3. Thus, fluoro substitution on carbon-23 of vitamin D has an unexpected and unexplained suppressive action on plasma binding and biological activity. However, since this substitution does not block the biological response of 25-hydroxyvitamin D3, these results provide additional evidence that 23-hydroxylation of vitamin D is not involved in biological function.  相似文献   

16.
Structural similarities between 25S,26-dihydroxyvitamin D3 and 25-hydroxyvitamin D3-26,23-lactone and their concomitant multifold increase in the plasma of animals treated with pharmacological doses of vitamin D3 suggest a precursor-product relationship. However, a single dose of 25S,26-[3H]dihydroxyvitamin D3 given to rats treated chronically with pharmacological amounts of vitamin D3 did not result in detectable plasma 25-[3H]hydroxyvitamin D3-26,23-lactone. Multiple doses of synthetic 25S,26-dihydroxyvitamin D3 given to vitamin D3-deficient rats treated chronically with pharmacological amounts of vitamin D2 also did not result in detectable plasma 25-hydroxyvitamin D3-26,23-lactone. Furthermore, homogenates prepared from vitamin d-deficient chickens, dosed with 1,25-dihydroxyvitamin D3, converted 25-[3H]hydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. But these same homogenates did not convert 25S,26-[3H]dihydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. These data indicate that 25,26-dihydroxyvitamin D3 is not an intermediate in 25-hydroxyvitamin D326, 23-lactone formation.  相似文献   

17.
Using [3H]-26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (F6-1,25-(OH)2D3), we have examined its ability to bind to the 1,25-(OH)2D3 receptor, and the ability of the resulting complex to bind DNA. The binding sites for [3H]F6-1,25-(OH)2D3 in the chick intestinal receptor represented a limited number of saturable sites for which 1,25-(OH)2D3 competes. 1,25-Dihydroxyvitamin D3 is three times more active than F6-1,25-(OH)2D3 in displacing [3H]F6-1,25-(OH)2D3. By affinity chromatography using DNA-Sephadex, the [3H]F6-1,25-(OH)2D3 receptor complex eluted from the column in a single peak at 0.14 M KCl, while [3H]-1,25-(OH)2D3 receptor complex eluted at 0.13 M KCl. These results indicate that F6-1,25-(OH)2D3 and 1,25-(OH)2D3 recognize the same binding site of the receptor and that the F6-1,25-(OH)2D3 receptor complex binds DNA more tightly than the 1,25-(OH)2D3 receptor complex. We suggest that the higher binding affinity for DNA may contribute to the greater biological activity of F6-1,25-(OH)2D3.  相似文献   

18.
We have studied the binding of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] to its crude chromatin chick intestinal receptor in the absence or presence of a ten-fold excess of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] for each concentration of [3H]-1,25(OH)2D3 studied. We have found a significant shift to the right in the binding of 1,25(OH)2D3 to its receptor in the presence of this excess of 24R,25(OH)2D3. As a result, the affinity was found to be significantly reduced, the apparent dissociation constants varied from 0.97 +/- 0.09 (n = 5) to 1.36 +/- 0.04 nM (p less than 0.01). This reduction was related to a significant decrease in the positive cooperativity for the apparent Hill coefficient from nH = 1.49 +/- 0.06 to nH = 1.26 +/- 0.06 (p less than 0.03) in the binding of 1,25(OH)2D3 to its receptor. There was no significant change in the capacity of the receptor (189 +/- 11 compared to 200 +/- 9 fmoles/mg protein). These results suggest that the intestinal 1,25(OH)2D3 receptor must also have a binding recognition site for 24R,25(OH)2D3 which is postulated to play a regulatory role in the 1,25(OH)2D3 receptor's ligand binding properties.  相似文献   

19.
[23 (S), 25 (R)]-1 alpha,25-Dihydroxyvitamin D3-26,23-lactone [( 23 (S),25 (R)]-1 alpha,25-(OH) 2D3-26,23-lactone) increased dose-dependently alkaline phosphatase activity in osteoblastic cells, clone MC3T3-E1, in medium containing 0.1% bovine serum albumin. The maximal stimulated enzyme activity per mg protein was 1.6-fold over that of control cultures at 250 pg/ml. The metabolite also increased collagen synthesis in a dose-related fashion. On the other hand, [23 (S),25 (R)]-1 alpha,25-(OH)2D3-26,23-lactone decreased slightly but significantly 45Ca mobilization, and blocked the resorptive action of 1 alpha,25-dihydroxyvitamin D3 but not that of parathyroid hormone, in mouse calvaria in organ culture. These results indicate that [23 (S),25 (R)]-1 alpha, 25-(OH)2D3-26,23-lactone stimulates the differentiation of osteoblasts and inhibits bone resorption in vitro.  相似文献   

20.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D(3)-26,23-lactone (1alpha,25-(OH)(2)D(3)-26,23-lactone) analogs on 1alpha,25(OH)(2)D(3)-induced differentiation of human leukemia HL-60 cells thought to be mediated by the genomic action of 1alpha, 25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) and of acute promyelocytic leukemia NB4 cells thought to be mediated by non-genomic actions of 1alpha,25-(OH)(2)D(3). We found that the 1alpha,25-(OH)(2)D(3)-26,23-lactone analogs, (23S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9648), inhibited differentiation of HL-60 cells induced by 1alpha,25-(OH)(2)D(3). However, 1beta-hydroxyl diastereomers of these analogs, i.e. (23S)-25-dehydro-1beta-hydroxyvitamin D(3)-26, 23-lactone (1beta-TEI-9647) and (23R)-25-dehydro-1beta-hydroxyvitamin D(3)-26,23-lactone (1beta-TEI-9648), did not inhibit differentiation of HL-60 cells caused by 1alpha,25-(OH)(2)D(3). A separate study showed that the nuclear vitamin D receptor (VDR) binding affinities of the 1-hydroxyl diastereomers were about 200 and 90 times weaker than that of 1alpha-hydroxyl diastereomers, respectively. Moreover, none of these lactone analogs inhibited NB4 cell differentiation induced by 1alpha,25-(OH)(2)D(3). In contrast, 1beta,25-dihydroxyvitamin D(3) (1beta,25-(OH)(2)D(3)) and 1beta,24R-dihydroxyvitamin D(3) (1beta,24R-(OH)(2)D(3)) inhibited NB4 cell differentiation but not HL-60 cell differentiation. Collectively, the results suggested that 1-hydroxyl lactone analogs, i.e. TEI-9647 and TEI-9648, are antagonists of 1alpha,25-(OH)(2)D(3), specifically for the nuclear VDR-mediated genomic actions, but not for non-genomic actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号