首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although gamma interferon (IFN-gamma) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-gamma-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-gamma T-cell responses and nonspecific IFN-gamma-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-gamma mRNA levels and a high frequency of IFN-gamma-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-gamma mRNA levels and strong in vitro SIV-specific IFN-gamma T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-gamma mRNA levels but weak in vitro anti-SIV IFN-gamma T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-gamma mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3(+) activated T cells. Thus, IFN-gamma-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-gamma-driven inflammation, but they did develop effective antiviral CD8(+)-T-cell responses.  相似文献   

2.
A comprehensive vaccine for human immunodeficiency virus type 1 (HIV-1) would block HIV-1 acquisition as well as durably control viral replication in breakthrough infections. Recent studies have demonstrated that Env is required for a vaccine to protect against acquisition of simian immunodeficiency virus (SIV) in vaccinated rhesus monkeys, but the antigen requirements for virologic control remain unclear. Here, we investigate whether CD8(+) T lymphocytes from vaccinated rhesus monkeys mediate viral inhibition in vitro and whether these responses predict virologic control following SIV challenge. We observed that CD8(+) lymphocytes from 23 vaccinated rhesus monkeys inhibited replication of SIV in vitro. Moreover, the magnitude of inhibition prior to challenge was inversely correlated with set point SIV plasma viral loads after challenge. In addition, CD8 cell-mediated viral inhibition in vaccinated rhesus monkeys correlated significantly with Gag-specific, but not Pol- or Env-specific, CD4(+) and CD8(+) T lymphocyte responses. These findings demonstrate that in vitro viral inhibition following vaccination largely reflects Gag-specific cellular immune responses and correlates with in vivo virologic control following infection. These data suggest the importance of including Gag in an HIV-1 vaccine in which virologic control is desired.  相似文献   

3.
A simian/human immunodeficiency virus (SHIV)-NM3n containing the human nef, but not the monkey nef, and vpr genes of SIV was inoculated into two cynomolgus monkeys, resulting in systemic infection with a minimum level of transient virus load. In order to study the nature of immune responses associated with the prevention of a pathogenic SHIV, the SHIV-NM3n-inoculated monkeys and three naive monkeys were intravenously challenged with a pathogenic SHIV containing the envelope gene of HIV-1 89.6. After the heterologous virus challenge, all of the SHIV-NM3n-inoculated animals completely avoided the loss of CD4+ T lymphocytes in PBMC as well as lymphoid tissues compared to pathogenic SHIV-injected control animals. The inhibition of CD4+ cell depletion was associated with maintaining the proliferative response of helper T-cells against SIV p27 in the previously nonpathogenic virus-inoculated animals following the pathogenic virus challenge. Furthermore, the decline of CD28+ cells, the increase in CD95+ cells, and the enhancement of in vitro apoptosis in PBMC were inhibited in the non-pathogenic virus-inoculated animals. These results suggest that nonpathogenic SHIV-NM3n infection induces the protection of monkeys from heterologous pathogenic viruses that may be associated with blocking the change in immune responses and the cell loss induced by a pathogenic virus.  相似文献   

4.
Prior infection with a nef-deleted simian immunodeficiency virus (SIV) protects macaques not only against a homologous pathogenic SIV challenge but also against challenge with a chimeric SIV expressing a human immunodeficiency virus type 1 env gene (SHIV). Since this SHIV is itself nonpathogenic, we sought to explore the use of a nonpathogenic SHIV as a live, attenuated AIDS virus vaccine. Four cynomolgus monkeys infected for greater than 600 days with a chimeric virus composed of SIVmac 239 expressing the human immunodeficiency virus type 1 HXBc2 env, tat, and rev genes were challenged intravenously with 100 animal infectious doses of the J5 clone of SIVmac 32H, an isolate derived by in vivo passage of SIVmac 251. Three of the four monkeys became infected with SIVmac. This observation underlines the difficulty, even with a live virus vaccine, in protecting against an AIDS virus infection.  相似文献   

5.
Although live-attenuated human immunodeficiency virus-1 (HIV) vaccines may never be used clinically, these vaccines have provided the most durable protection from intravenous (IV) challenge in the simian immunodeficiency virus (SIV)/rhesus macaque model. Systemic infection with virulence attenuated-simian-human immunodeficiency virus (SHIV) 89.6 provides protection against vaginal SIV challenge. This paper reviews the findings related to the innate and adaptive immune responses and the role of inflammation associated with protection in the SHIV 89.6/SIVmac239 model. By an as yet undefined mechanism, most monkeys vaccinated with live-attenuated SHIV 89.6 mounted effective anti-viral CD8+ T cell responses while avoiding the self-destructive inflammatory cycle found in the lymphoid tissues of unprotected and unvaccinated monkeys.  相似文献   

6.
We examined the ability of a live, attenuated deletion mutant of simian immunodeficiency virus (SIV), SIVmac239Delta3, which is missing nef and vpr genes, to protect against challenge by heterologous strains SHIV89.6p and SIVsmE660. SHIV89.6p is a pathogenic, recombinant SIV in which the envelope gene has been replaced by a human immunodeficiency virus type 1 envelope gene; other structural genes of SHIV89.6p are derived from SIVmac239. SIVsmE660 is an uncloned, pathogenic, independent isolate from the same primate lentivirus subgrouping as SIVmac but with natural sequence variation in all structural genes. The challenge with SHIV89.6p was performed by the intravenous route 37 months after the time of vaccination. By the criteria of CD4(+) cell counts and disease, strong protection against the SHIV89.6p challenge was observed in four of four vaccinated monkeys despite the complete mismatch of env sequences. However, SHIV89.6p infection was established in all four previously vaccinated monkeys and three of the four developed fluctuating viral loads between 300 and 10,000 RNA copy equivalents per ml of plasma 30 to 72 weeks postchallenge. When other vaccinated monkeys were challenged with SIVsmE660 at 28 months after the time of vaccination, SIV loads were lower than those observed in unvaccinated controls but the level of protection was less than what was observed against SHIV89.6p in these experiments and considerably less than the level of protection against SIVmac251 observed in previous experiments. These results demonstrate a variable level of vaccine protection by live, attenuated SIVmac239Delta3 against heterologous virus challenge and suggest that even live, attenuated vaccine approaches for AIDS will face significant hurdles in providing protection against the natural variation present in field strains of virus. The results further suggest that factors other than anti-Env immune responses can be principally responsible for the vaccine protection by live, attenuated SIV.  相似文献   

7.
Attenuated primate lentivirus vaccines provide the most consistent protection against challenge with pathogenic simian immunodeficiency virus (SIV). Thus, they provide an excellent model to examine the influence of the route of immunization on challenge outcome and to study vaccine-induced protective anti-SIV immune responses. In the present study, rhesus macaques were immunized with live nonpathogenic simian-human immunodeficiency virus (SHIV) 89.6 either intravenously or mucosally (intranasally or intravaginally) and then challenged intravaginally with pathogenic SIVmac239. The route of immunization did not affect mucosal challenge outcome after a prolonged period of systemic infection with the nonpathogenic vaccine virus. Further, protection from the SIV challenge was associated with the induction of multiple host immune effector mechanisms. A comparison of immune responses in vaccinated-protected and vaccinated-unprotected animals revealed that vaccinated-protected animals had higher frequencies of SIV Gag-specific cytotoxic T lymphocytes and gamma interferon (IFN-gamma)-secreting cells during the acute phase postchallenge. Vaccinated-protected animals also had a more pronounced increase in peripheral blood mononuclear cell IFN-alpha mRNA levels than did the vaccinated-unprotected animals in the first few weeks after challenge. Thus, innate as well as cellular anti-SIV immune responses appeared to contribute to the SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239.  相似文献   

8.
Production of IL-2 and IFN-gamma by CD4+ T lymphocytes is important for the maintenance of a functional immune system in infected individuals. In the present study, we assessed the cytokine production profiles of functionally distinct subsets of CD4+ T lymphocytes in rhesus monkeys infected with pathogenic or attenuated SIV/simian human immunodeficiency virus (SHIV) isolates, and these responses were compared with those in vaccinated monkeys that were protected from immunodeficiency following pathogenic SHIV challenge. We observed that preserved central memory CD4+ T lymphocyte production of SIV/SHIV-induced IL-2 was associated with disease protection following primate lentivirus infection. Persisting clinical protection in vaccinated and challenged monkeys is thus correlated with a preserved capacity of the peripheral blood central memory CD4+ T cells to express this important immunomodulatory cytokine.  相似文献   

9.
Here we provide the first report of protection against a vaginal challenge with a highly virulent simian immunodeficiency virus (SIV) by using a vaccine vector. New poliovirus vectors based on Sabin 1 and 2 vaccine strain viruses were constructed, and these vectors were used to generate a series of new viruses containing SIV gag, pol, env, nef, and tat in overlapping fragments. Two cocktails of 20 transgenic polioviruses (SabRV1-SIV and SabRV2-SIV) were inoculated into seven cynomolgus macaques. All monkeys produced substantial anti-SIV serum and mucosal antibody responses. SIV-specific cytotoxic T-lymphocyte responses were detected in three of seven monkeys after vaccination. All 7 vaccinated macaques, as well as 12 control macaques, were challenged vaginally with pathogenic SIVmac251. Strikingly, four of the seven vaccinated animals exhibited substantial protection against the vaginal SIV challenge. All 12 control monkeys became SIV positive. In two of the seven SabRV-SIV-vaccinated monkeys we found no virological evidence of infection following challenge, indicating that these two monkeys were completely protected. Two additional SabRV-SIV-vaccinated monkeys exhibited a pronounced reduction in postacute viremia to <10(3) copies/ml, suggesting that the vaccine elicited an effective cellular immune response. Three of six control animals developed clinical AIDS by 48 weeks postchallenge. In contrast, all seven vaccinated monkeys remained healthy as judged by all clinical parameters. These results demonstrate the efficacy of SabRV as a potential human vaccine vector, and they show that the use of a vaccine vector cocktail expressing an array of defined antigenic sequences can be an effective vaccination strategy in an outbred population.  相似文献   

10.
Here, we study the temporal expression of the inhibitory receptor programmed death 1 (PD-1) on simian immunodeficiency virus (SIV) Gag-specific T cells following pathogenic SIV infection or following vaccination with a DNA/modified vaccinia virus Ankara (DNA/MVA) vaccine and simian/human immunodeficiency virus (SHIV) challenge in macaques. Following infection, the majority (>95%) of Gag-specific CD8 T cells expressed PD-1, and the level of PD-1 expression per cell increased over time. The level of PD-1 expression in lymph nodes and rectal mucosal tissue, the major sites of virus replication, was higher compared to blood. In vitro blockade of PD-1 resulted in enhanced proliferation of SIV-specific CD8 as well as CD4 T cells. In contrast, following vaccination, the majority of peak effector Gag-specific CD8 T cells expressed low levels of PD-1, and these levels decreased further as the cells differentiated into memory cells. In addition, following SHIV challenge of these vaccinated macaques, the level of PD-1 expression on Gag-specific CD8 T cells correlated positively with plasma viremia. These results demonstrate that SIV-specific CD8 T cells express PD-1 after exposure to antigen but downregulate expression under conditions of antigen clearance and enhance expression under conditions of antigen persistence. They also demonstrate that the level of PD-1 expression per cell rather than the presence or absence of expression plays an important role in regulating CD8 T-cell dysfunction in pathogenic SIV infection. In addition, they demonstrate that similar to HIV infection, the PD-1:PD-1 ligand inhibitory pathway is operational in pathogenic SIV infection, and the macaque/SIV model would be ideal to test the safety and therapeutic benefit of blocking this pathway in vivo.  相似文献   

11.
Although live attenuated vaccines can provide potent protection against simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that confer this protection have not been determined. To test whether cellular immune responses mediated by CD8+ lymphocytes contribute to this vaccine-induced protection, we depleted rhesus macaques vaccinated with the live attenuated virus SIVmac239Delta3 of CD8+ lymphocytes and then challenged them with SIVmac251 by the intravenous route. While vaccination did not prevent infection with the pathogenic challenge virus, the postchallenge levels of virus in the plasmas of vaccinated control animals were significantly lower than those for unvaccinated animals. The depletion of CD8+ lymphocytes at the time of challenge resulted in virus levels in the plasma that were intermediate between those of the vaccinated and unvaccinated controls, suggesting that CD8+ cell-mediated immune responses contributed to protection. Interestingly, at the time of challenge, animals expressing the Mamu-A*01 major histocompatibility complex class I allele showed significantly higher frequencies of SIV-specific CD8+ T-cell responses and lower neutralizing antibody titers than those in Mamu-A*01- animals. Consistent with these findings, the depletion of CD8+ lymphocytes abrogated vaccine-induced protection, as judged by the peak postchallenge viremia, to a greater extent in Mamu-A*01+ than in Mamu-A*01- animals. The partial control of postchallenge viremia after CD8+ lymphocyte depletion suggests that both humoral and cellular immune responses induced by live attenuated SIV vaccines can contribute to protection against a pathogenic challenge and that the relative contribution of each of these responses to protection may be genetically determined.  相似文献   

12.
Both the magnitude and function of vaccine-induced HIV-specific CD8+ CTLs are likely to be important in the outcome of infection. We hypothesized that rapid cytolysis by CTLs may facilitate control of viral challenge. Release kinetics of the cytolytic effector molecules granzyme B and perforin, as well as the expression of the degranulation marker CD107a and IFN-gamma were simultaneously studied in SIV Gag(164-172) KP9-specific CD8+ T cells from Mane-A*10+ pigtail macaques. Macaques were vaccinated with either prime-boost poxvirus vector vaccines or live-attenuated SIV vaccines. Prime-boost vaccination induced Gag-specific CTLs capable of only slow (after 3 h) production of IFN-gamma and with limited (<5%) degranulation and granzyme B release. Vaccination with live-attenuated SIV resulted in a rapid cytolytic profile of SIV-specific CTLs with rapid (<0.5 h) and robust (>50% of tetramer-positive CD8+ T cells) degranulation and granzyme B release. The cytolytic phenotype following live-attenuated SIV vaccinations were similar to that associated with the partial resolution of viremia following SIV(mac251) challenge of prime-boost-vaccinated macaques, albeit with less IFN-gamma expression. High proportions of KP9-specific T cells expressed the costimulatory molecule CD28 when they exhibited a rapid cytolytic phenotype. The delayed cytolytic phenotype exhibited by standard vector-based vaccine-induced CTLs may limit the ability of T cell-based HIV vaccines to rapidly control acute infection following a pathogenic lentiviral exposure.  相似文献   

13.
The efficacy of a multicomponent vaccination with modified vaccinia Ankara constructs (rMVA) expressing structural and regulatory genes of simian immunodeficiency virus (SIV(mac251/32H/J5)) was investigated in cynomolgus monkeys, following challenge with a pathogenic SIV. Vaccination with rMVA-J5 performed at week 0, 12, and 24 induced a moderate proliferative response to whole SIV, a detectable humoral response to all but Nef SIV antigens, and failed to induce neutralizing antibodies. Two months after the last boost, the monkeys were challenged intravenously with 50 MID50 of SIV(mac251). All control monkeys, previously inoculated with non-recombinant MVA, were infected by week two and seroconverted by weeks four to eight. In contrast a sharp increase of both humoral and proliferative responses at two weeks post-challenge was observed in vaccinated monkeys compared to control monkeys. Although all vaccinated monkeys were infected, vaccination with rMVA-J5 appeared to partially control viral replication during the acute and late phase of infection as judged by cell- and plasma-associated viral load.  相似文献   

14.
Functional impairment of virus-specific memory CD8(+) T lymphocytes has been associated with clinical disease progression following HIV, SIV, and simian human immunodeficiency virus infection. These lymphocytes have a reduced capacity to produce antiviral cytokines and mediators involved in the lysis of virally infected cells. In the present study, we used polychromatic flow cytometry to assess the frequency and functional capacity of central memory (CD28(+)CD95(+)) and effector memory (CD28(-)CD95(+)) subpopulations of Gag-specific CD8(+) T cells in SIV/simian human immunodeficiency virus-infected rhesus monkeys. The aim of this study was to determine whether Ag-specific, memory CD8(+) T cell function could be preserved in infected monkeys that had been immunized before infection with a vaccine regimen consisting of a plasmid DNA prime followed by a recombinant viral vector boost. We observed that vaccination was associated with the preservation of Gag-specific central memory CD8(+) T cells that were functionally capable of producing IFN-gamma, and effector memory CD8(+) T cells that were capable of producing granzyme B following viral Ag exposure.  相似文献   

15.
Use of simian immunodeficiency virus for vaccine research   总被引:2,自引:0,他引:2  
Rhesus monkeys were immunized with purified, disrupted, noninfectious simian immunodeficiency virus (SIV) in adjuvant induced SIV neutralizing antibodies. Two of six previously vaccinated macaques were protected against infection when challenged with 200-1,000 animal infectious doses of uncloned, pathogenic SIV and both have remained free of signs of virus infection for 19 and 30 months. Prior vaccination appeared to be of benefit in decreasing the virus load and in delaying the onset of AIDS in animals that became infected. Nonetheless, two of four previously vaccinated monkeys that became infected following challenge eventually developed AIDS and died 505 and 538 days after infection. Thus, for a vaccine to be truly effective against AIDS, it may have to protect absolutely against initial infection.  相似文献   

16.
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.  相似文献   

17.
Cytotoxic T lymphocyte (CTL) responses are crucial for the control of human and simian immunodeficiency virus (HIV and SIV) replication. A promising AIDS vaccine strategy is to induce CTL memory resulting in more effective CTL responses post-viral exposure compared to those in natural HIV infections. We previously developed a CTL-inducing vaccine and showed SIV control in some vaccinated rhesus macaques. These vaccine-based SIV controllers elicited vaccine antigen-specific CTL responses dominantly in the acute phase post-challenge. Here, we examined CTL responses post-challenge in those vaccinated animals that failed to control SIV replication. Unvaccinated rhesus macaques possessing the major histocompatibility complex class I haplotype 90-088-Ij dominantly elicited SIV non-Gag antigen-specific CTL responses after SIV challenge, while those induced with Gag-specific CTL memory by prophylactic vaccination failed to control SIV replication with dominant Gag-specific CTL responses in the acute phase, indicating dominant induction of vaccine antigen-specific CTL responses post-challenge even in non-controllers. Further analysis suggested that prophylactic vaccination results in dominant induction of vaccine antigen-specific CTL responses post-viral exposure but delays SIV non-vaccine antigen-specific CTL responses. These results imply a significant influence of prophylactic vaccination on CTL immunodominance post-viral exposure, providing insights into antigen design in development of a CTL-inducing AIDS vaccine.  相似文献   

18.
Three different deletion mutants of simian immunodeficiency virus (SIV) that vary in their levels of attenuation were tested for the ability to protect against mucosal challenge with pathogenic SIV. Four female rhesus monkeys were vaccinated by intravenous inoculation with SIVmac239Delta3, four with SIVmac239Delta3X, and four with SIVmac239Delta4. These three vaccine strains exhibit increasing levels of attenuation: Delta3 < Delta3X 相似文献   

19.
Background To determine the correlation between protection and humoral immune response against simian immunodeficiency virus (SIVmac251), 11 macaques were immunized with live‐attenuated SIVmac239Δnef either intravenously or via the tonsils and exposed to SIVmac251 after either 6 or 15 months along with unvaccinated controls. Results Independent of the route of vaccine application, viremia was significantly reduced in vaccinees compared with controls 2 weeks post‐challenge. Concomitantly, viremia correlated inversely with SIV‐specific IgG, complement‐mediated lysis and neutralizing antibodies and these parameters seemed to contribute to reduced viremia. During chronic infection, six monkeys controlled viremia in the circulation (two or fewer infectious units per 106 PBMCs) and showed no signs of trapping in lymphatic tissues (Appendix S1). Conclusions As no significant differences were observed throughout the study, with respect to the humoral immune response and viremia control, between the two vaccinated cohorts, mucosal immunization strategies are recommended due to more simplified application.  相似文献   

20.
Accumulating evidence suggests that HIV-specific CD8(+) CTL are dysfunctional in HIV-infected individuals with progressive clinical disease. In the present studies, cytokine production by virus-specific CTL was assessed in the rhesus monkey model for AIDS to determine its contribution to the functional impairment of CTL. CTL from monkeys infected with nonpathogenic isolates of simian and simian-human immunodeficiency virus expressed high levels of IFN-gamma, TNF-alpha, and IL-2 after in vitro exposure to a nonspecific mitogen or the optimal peptide representing a dominant virus-specific CTL epitope. However, similarly performed studies assessing these capabilities in CTL from monkeys infected with pathogenic immunodeficiency virus isolates demonstrated a significant dysfunction in the ability of the CTL to produce IL-2 and TNF-alpha. Importantly, CTL from vaccinated monkeys that effectively controlled the replication of a highly pathogenic simian-human immunodeficiency virus isolate following challenge demonstrated a preserved capacity to produce these cytokines. These experiments suggest that defects in cytokine production may contribute to CTL dysfunction in chronic HIV or SIV infection. Moreover, an AIDS vaccine that confers protection against clinical disease evolution in this experimental model also preserves the functional capacity of these CTL to produce both IL-2 and TNF-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号