首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文以玉米浆和木薯为原料,用机械搅拌式发酵罐制备细菌纤维素(BC),对发酵过程的纤维素产量、还原糖消耗、溶氧变化和茵浓变化进行了监测,并以葡萄糖一蛋白胨-酵母粉培养基为对照进行了比较。实验得出玉米浆作氮源时不溶BC的产量为9.2g/L,而氮源成本只是对照组的15%;木薯水解液作碳源时的不溶BC产量达到11.7g/L,比对照组(10.8g/L)高8%;而用玉米浆搭配木薯水解液发酵生产BC,产量也达到10.1g/L,验证了这两种天然原料的廉价高效性,用于工业生产细菌纤维素具有良好的前景。  相似文献   

2.
Li  Yuanjing  Yan  Pengfei  Lei  Qingyun  Li  Bingyu  Sun  Yue  Li  Shuangfei  Lei  Hong  Xie  Ning 《Journal of industrial microbiology & biotechnology》2019,46(11):1491-1503
Journal of Industrial Microbiology & Biotechnology - Komagataeibacter hansenii HDM1-3 (K. hansenii HDM1-3) has been widely applied for producing bacterial cellulose (BC). The yield of BC has...  相似文献   

3.
Culture conditions in a jar fermentor for bacterial cellulose (BC) production from A. xylinum BPR2001 were optimized by statistical analysis using Box-Behnken design. Response surface methodology was used to predict the levels of the factors, fructose (X1), corn steep liquor (CSL) (X2), dissolved oxygen (DO) (X3), and agar concentration (X4). Total 27 experimental runs by combination of each factor were carried out in a 10-L jar fermentor, and a three-dimensional response surface was generated to determine the effect of the factors and to find out the optimum concentration of each factor for maximum BC production and BC yield. The fructose and agar concentration highly influenced the BC production and BC yield. However, the optimum conditions according to changes in CSL and DO concentrations were predicted at almost central values of tested ranges. The predicted results showed that BC production was 14.3 g/L under the condition of 4.99% fructose, 2.85% CSL, 28.33% DO, and 0.38% agar concentration. On the other hand, BC yield was predicted in 0.34 g/g under the condition of 3.63% fructose, 2.90% CSL, 31.14% DO, and 0.42% agar concentration. Under optimized culture conditions, improvement of BC production and BC yield were experimentally confirmed, which increased 76% and 57%, respectively, compared to BC production and BC yield before optimizing the culture conditions.  相似文献   

4.
为了提高细菌纤维素的产量, 本研究对一株氧化葡糖杆菌菌株J2液体发酵生产细菌纤维素的培养基进行了优化, 并对其代谢的细菌纤维的超微观结构进行了观察。运用Plackett-Burman试验设计法对8个相关影响因素的效应进行了评价, 筛选出了有显著效应的3个因素: 酵母膏、ZnSO4、无水乙醇, 其他5个因素的影响未达到显著水平(P>0.05)。然后采用Box-Behnken的中心组合试验设计和响应面分析方法(RSM)确定了上述三个因素的最佳浓度, 并且以棉纤维为对照, 运用扫描电镜观察了细菌纤维素的超微观结构, 结果表明: 菌株J2利用优化后的发酵培养基生产细菌纤维素的产量为11.52 g/100 mL, 是优化前的1.35倍, 电镜照片显示细菌纤维素微纤维丝直径<0.1 mm, 比棉纤维细很多, NaOH处理可以除去纤维网络结构中的菌体。  相似文献   

5.
细菌纤维素发酵培养基的优化及超微观结构分析   总被引:1,自引:0,他引:1  
为了提高细菌纤维素的产量, 本研究对一株氧化葡糖杆菌菌株J2液体发酵生产细菌纤维素的培养基进行了优化, 并对其代谢的细菌纤维的超微观结构进行了观察。运用Plackett-Burman试验设计法对8个相关影响因素的效应进行了评价, 筛选出了有显著效应的3个因素: 酵母膏、ZnSO4、无水乙醇, 其他5个因素的影响未达到显著水平(P>0.05)。然后采用Box-Behnken的中心组合试验设计和响应面分析方法(RSM)确定了上述三个因素的最佳浓度, 并且以棉纤维为对照, 运用扫描电镜观察了细菌纤维素的超微观结构, 结果表明: 菌株J2利用优化后的发酵培养基生产细菌纤维素的产量为11.52 g/100 mL, 是优化前的1.35倍, 电镜照片显示细菌纤维素微纤维丝直径<0.1 mm, 比棉纤维细很多, NaOH处理可以除去纤维网络结构中的菌体。  相似文献   

6.
A cellulolytic, acetic acid producing anaerobic bacterial isolate, Gram negative, rod-shaped, motile, terminal oval shaped endospore forming bacterium identified as Clostridium lentocellum SG6 based on physiological and biochemical characteristics. It produced acetic acid as a major end product from cellulose fermentation at 37°C and pH 7.2. Acetic acid production was 0.67 g/g cellulose substrate utilized in cellulose mineral salt (CMS) medium. Yeast extract (0.4%) was the best nitrogen source among the various nitrogenous nutrients tested in production medium containing 0.8% cellulose as substrate. No additional vitamins or trace elemental solution were required for acetic acid fermentation. This is the highest acetic acid fermentation yield in monoculture fermentation for direct conversion of cellulose to acetic acid.  相似文献   

7.
To improve the yield of cellulose production in bacteria, we investigated the stimulatory effects of six different alcohols during fermentation of Acetobacter xylinum 186. Our study showed that after static fermentation at 30°C for 6 days, bacterial culture with 1.0% (v/v) of methanol added in the medium produced the highest bacterial cellulose (BC) yield at 103.5 mg/100 ml, which was 21.8% higher than the control group. Addition of 0.5% of ethylene glycol in the culture yielded 105.5 mg/100 ml BC, 24.1% higher than the control group. Adding 0.5% of n-propanol yielded 96.4 mg/100 ml BC, 13.4% higher; 3.0% of glycerol yielded 108.3 mg/100 ml BC, 27.4% higher; 0.5% of n-butanol yielded 132.6 mg/100 ml BC, 56.0% higher; and 4.0% of mannitol in the culture yielded 125.2 mg/100 ml BC, 47.3% higher, respectively. The rate of bacterial cellulose production increased with the growth rate of the bacteria. The stimulatory effects of these alcohols that we observed were significant in the later stage of fermentation, which was considered to be important for the biosynthesis of bacterial cellulose.  相似文献   

8.
Park JK  Jung JY  Park YH 《Biotechnology letters》2003,25(24):2055-2059
The addition of 1% (v/v) ethanol to the basal medium inhibited growth of Gluconacetobacter hansenii but decreased the numbers of non-cellulose producing cells. Cellulose production increased 1.7 times to approx. 2.5 g l(-1) and showed a pattern of mixed growth-associated production. Microbial cells produced rigid pellicle-type bacterial cellulose as the shell of a large lump of bacterial cellulose like a static culture. The inoculum cultivated for 3 d maintained cellulose production by the fifth batch.  相似文献   

9.
Biomass acid hydrolysate of oleaginous yeast Trichosporon cutaneum after microbial oil extraction was applied as substrate for bacterial cellulose (BC) production by Komagataeibacter xylinus (also named as Gluconacetobacter xylinus previously) for the first time. BC was synthesized in static culture for 10 days, and the maximum BC yield (2.9?g/L) was got at the 4th day of fermentation. Most carbon sources in the substrate (glucose, mannose, formic acid, acetic acid) can be utilized by K. xylinus. The highest chemical oxygen demand (COD) removal (40.7?±?3.0%) was obtained at the 6th day of fermentation, and then the COD increased possibly due to the degradation of BC. The highest BC yield on COD consumption was 38.7?±?4.0% (w/w), suggesting that this is one efficient bioconversion for BC production. The BC structure was affected little by the substrate by comparison with that generated in classical HS medium using field-emission scanning electron microscope (FE-SEM), Fourier transform infrared, and X-ray diffraction. Overall, this technology can both solve the issue of waste oleaginous yeast biomass and produce valuable biopolymer (BC).  相似文献   

10.
Although litchi has both nutrient and edible value, the extremely short preservation time limited its further market promotion. To explore processed litchi products with longer preservation time, litchi extract was selected as an alternative feedstock for production of bacterial cellulose (BC). After 2 weeks of static fermentation, 2.53 g/L of the BC membrane was obtained. The trace elements including magnesium (Mg) and sodium (Na) in the litchi extract were partly absorbed in the BC membrane, but no potassium (K) element was detected in it, curiously. Scanning electron microscope (SEM) photographs exhibited an ultrafine network nanostructure for the BC produced in the litchi extract. Analysis of the fourier-transform infrared spectroscopy (FTIR) confirmed the pellicles to be a cellulosic material. Interestingly, X-ray diffraction (XRD) results showed the BC membrane obtained from litchi extract had higher crystallinity of 94.0% than that from HS medium. Overall, the work showed the potential of producing high value-added polymer from litchi resources.  相似文献   

11.
Acetobacter xylinum BPR2001 produces water-insoluble bacterial cellulose (BC). Using a pH sensor for the accurate control of pH, which is one of the most critical factors for efficient BC production, is difficult especially in a baffled shake-flask and an airlift reactor. The buffering capacity of corn steep liquor (CSL) was estimated by measuring (buffering capacity) values in advance and was used to maintain the pH within the optimal range during the production of BC. When CSL was added to either a shake-flask, a stirred-tank reactor or an airlift reactor, BC production was almost the same as that in cultivations where pH was controlled manually or by a pH sensor.  相似文献   

12.
Applied Microbiology and Biotechnology - A strain of acetic acid bacteria, Komagataeibacter xylinus B-12068, was studied as a source for bacterial cellulose (BC) production. The effects of...  相似文献   

13.
Lee K 《Bioresource technology》2005,96(13):1505-1510
The aim of this study was to investigate industrial media for lactic acid fermentation to reduce the cost of nitrogen sources. Corn steep liquor (CSL) was successfully used at 5% (v/v) in batch fermentations. Use of soluble CSL improved the productivity approximately 20% with an advantage of clearer fermentation broth. Yeast extract (YE)-complemented CSL media further increased the productivity. It was found that 3.1 g L(-1) yeast extract and 5% CSL could be an effective substitute for 15 g L(-1) yeast extract in 10% glucose medium. Spent brewery yeast was also used as a sole nitrogen source equivalent to 5% CSL. Lactic acid was recovered by electrodialysis from the cell free broth. Depleted cell free broth supplemented with 5 g L(-1) of yeast extract performed reasonably in batch cultures. Reuse of the fermentation broth may reduce the cost of raw materials as well as minimize the fermentation wastes.  相似文献   

14.
Bacterial cellulose production by fed-batch fermentation in molasses medium   总被引:2,自引:0,他引:2  
Bae S  Shoda M 《Biotechnology progress》2004,20(5):1366-1371
Batch and fed-batch fermentations for bacterial cellulose (BC) production using molasses as a carbon source by Acetobacter xylinum BPR2001 were carried out in a jar fermentor. For improvement of BC production, molasses was subjected to H2SO4-heat treatment. The maximum BC concentration by this treated molasses increased 76%, and the specific growth rate increased 2-fold compared with that by untreated molasses. In batch fermentation, when the initial sugar concentrations of H2SO4-heat-treated molasses were varied from 20 to 70 g/L, the highest value of maximum BC concentration of 5.3 g/L was observed at 20 g/L. BC production in intermittent fed-batch (IFB) fermentation was conducted referring to the data in batch fermentation, and the highest BC production of 7.82 g/L was obtained when 0.2 L of molasses medium was added five times. When continuous fed-batch (CFB) fermentations were conducted, maximum BC concentration was obtained with a feeding rate of 6.3 g-sugar/h, which was derived from the optimal IFB experiment.  相似文献   

15.
Experiments were carried out to study the production of aroma compounds from coffee husk by a fungal culture of C. fimbriata in solid state fermentation. Hot water treated coffee husk seemed to be useful substrate for aroma production in comparison to whole coffee husk or its water extract. Raw data were integrated in order to calculate the total volatiles (TV) accumulated during the fermentation using the Gompertz model. Glucose addition between 20-35% increased significantly the yields of aroma compounds. Supplementation of leucine further improved the TV production significantly (about 58%), specially the esters. When soybean oil was added, TV production was similar to the control, showing that the fungus was not able to use soybean oil for its primary metabolism, nor it acted as precursor for the synthesis of methyl ketones as reported for other fungi. Addition of saline solution drastically decreased the volatile production. Under optimized conditions, a total of 13 compounds were produced which included alcohols (2), aldehyde (1), ketones (2) and esters (8). Ethyl acetate was the prominent compound, followed by ethanol.  相似文献   

16.
目的:从大庆油田原油样品中筛选出2株产有机酸量较高的菌株,并对其产物进行分析.方法:根据形态特征、生理生化性质和16S rDNA序列分析对菌株进行鉴定,并运用GC/MS法对发酵液进行分析.结果:经鉴定这两株为枯草芽孢杆菌,菌株T10 -3的发酵液中含有乙酸11.407%,异丁酸9.375%,丁二醇79.217%;菌株DH -2 -l发酵液的中含有异丁酸41.56%,丁二醇46.619%,异戊酸4.138%,异庚酸10.680%.结论:这两株细菌在微生物采油方面均有良好的应用前景.  相似文献   

17.
Lactobacillus intermedius B-3693 was selected as a good producer of mannitol from fructose after screening 72 bacterial strains. The bacterium produced mannitol, lactic acid, and acetic acid from fructose in pH-controlled batch fermentation. Typical yields of mannitol, lactic acid, and acetic acid from 250 g/L fructose were 0.70, 0.16, and 0.12 g, respectively per g of fructose. The fermentation time was greatly dependent on fructose concentration but the product yields were not dependent on fructose level. Fed-batch fermentation decreased the time of maximum mannitol production from fructose (300 g/L) from 136 to 92 h. One-third of fructose could be replaced with glucose, maltose, galactose, mannose, raffinose, or starch with glucoamylase (simultaneous saccharification and fermentation), and two-thirds of fructose could be replaced with sucrose. L. intermedius B-3693 did not co-utilize lactose, cellobiose, glycerol, or xylose with fructose. It produced lactic acid and ethanol but no acetic acid from glucose. The bacterium produced 21.3 +/- 0.6 g lactic acid, 10.5 +/- 0.3 g acetic acid, and 4.7 +/- 0.0 g ethanol per L of fermentation broth from dilute acid (15% solids, 0.5% H(2)SO(4), 121 degrees C, 1 h) pretreated enzyme (cellulase, beta-glucosidase) saccharified corn fiber hydrolyzate.  相似文献   

18.
Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS) were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC) production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L) that was 2.5-fold greater than the control (2.82 g/L). The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93%) and similar crystal size (5.2 nm) to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher T max compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to the control BC. The results clearly demonstrated that implementation of PCS within agitated fermentation enhanced BC production and improved its mechanical properties and thermal stability.  相似文献   

19.
从残次水果中分离出1株菌株ZF-7,其产物经纤维素特异性染色反应、红外光谱分析及纤维素酶水解实验后,被确定为细菌纤维素。在对ZF-7菌株常规形态学及生理生化特性鉴定的基础上,对部分长度的16S rDNA同源性进行了分析,发现ZF-7菌株与解淀粉芽胞杆菌相似度可达99.5%,现命名为Bacillus amyloliquefaciens ZF-7。对ZF-7菌株在振荡培养和静置培养条件下的发酵性能进行了初步考察,得到细菌纤维素产率分别为6.6和6.2 g/L。  相似文献   

20.
Nineteen bacterial isolates were grown in shaken cultures in media containing chitin as carbon source and different additional nitrogen sources such as yeast nitrogen base (YNB), yeast extract (YE), corn steep liquor (CSL) and ammonium sulfate. Strain BM17 showed the highest activity (200 U/l) in medium containing Chitin (1%) and YNB (0.5%). Molecular analysis of the 16S rRNA gene showed that strain BM17 belongs to the species Paenibacillus pabuli (99.72% homology). The enzyme activity started after 12-24 h; exponential enzyme production was recorded from the 24th h and lasted till the 96th h of incubation when activity peaked to decrease thereafter. Medium optimisation was carried out by Response Surface Methodology (RSM) considering the effects of chitin, corn steep liquor and yeast extract. BM17 chitinolytic activity was induced by chitin but the increase of its concentration did not have significant effects on the enzyme activity. By contrast, the nitrogen source, particularly YE, strongly affected the enzyme production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号