首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition of the volatile organic compounds (VOCs) of various leaf tobacco brands and their blends has been studied. The differences in the content of nicotine, solanone, tetramethyl hexadecenol, megastigmatrienones, and other compounds, determining the specific tobacco smell, have been revealed. A microbial consortium, which is able to deodorize simulated tobacco emissions and decompose nicotine, has been formed by long-term adaptation to the VOCs of tobacco leaves in a laboratory reactor, functioning as a trickle-bed biofilter. Such a biofilter eliminates 90% of the basic toxic compound (nicotine) and odor-active compounds; the filtration efficiency does not change for tobacco brands with different VOC concentrations or in the presence of foreign substances. The main strains, isolated from the formed consortium and participating in the nicotine decomposition process, belong to the genera Pseudomonas, Bacillus, and Rhodococcus. An examination of the biofilter trickling fluid has shown full decomposition of nicotine and odor-active VOCs. The compounds, revealed in the trickling fluid, did not have any odor and were nontoxic. The obtained results make it possible to conduct scaling of the biofiltration process to eliminate odor from air emissions in the tobacco industry.  相似文献   

2.
Mispah form (FAO: Lithosol) soil contaminated with >380 000 mg kg?1 creosote was co-composted with cattle manure and mixed vegetable waste for 19 months. The soil was mixed with wood chips to improve aeration and then mixed with cattle manure or mixed vegetable waste in a ratio of 4:1. Moisture, temperature, pH, ash content, C:N ratios, and the concentrations of creosote in the compost systems were monitored monthly. The concentrations of selected hydrocarbons in the compost systems were determined at the end of composting. Temperature rose to about 45°C in the cattle manure compost within two months of incubation while temperature in the control and vegetable waste remained below 30°C until the fourth month. Creosote concentration was reduced by 17% in the control and by more than 99% in the cattle manure and vegetable waste compost after composting. The rate of reduction in concentration in the mixed vegetable waste compost was initially lower than in the cattle manure compost. The reduction rate became similar in later months with only small differences towards the end of the composting. The concentrations of selected creosote components were reduced by between 96% and 100% after composting. There was no significant difference in reduction in concentration in both compost systems at p 0.05. Microbial activity correlated with reduction in creosote concentration.  相似文献   

3.
Compost liquor bioremediation using waste materials as biofiltration media   总被引:3,自引:0,他引:3  
Compost liquor results from the percolation of precipitation through composting waste; the release of liquids from high moisture content feedstocks; and as a result of runoff from hard surfaces and machinery. This research aimed to establish the potential for waste materials to act as media for low-cost compost liquor biofilters. Six types of potential biofilter media were packed into experimental biofilters (1 m long x 0.11 m diameter) and irrigated with compost liquor (organic loading rate of 0.6 kg/m3/d) for three months. The pH, BOD5, NH3/NH4+, and phytotoxicity of the effluent was monitored regularly. Natural, organic materials (oversize, compost and wood mulch) performed best, when compared to synthetic materials such as polystyrene packaging or inert materials such as broken brick. On average, the best media achieved 78% removal of both BOD5 and ammoniacal nitrogen during the study period. Although significant improvements in liquor quality were achieved, the effluent remained heavily polluted.  相似文献   

4.
Compost biofiltration of ammonia gas from bin composting   总被引:3,自引:0,他引:3  
The effects of the manure compost/coconut peels on the ammonia removal efficiency were examined from dairy manure composting mixed with crop residues. The high rapid composting and manure compost biofiltration experiments consisted of three biofilter vessels with one composter. Dairy manure amended with rice hulls and sawdust was composted in 605 L pilot-scale composter using continuous aeration for 19 days. Three pilot-scale manure compost biofilter amended with media bed 500 mm in depth and 300 mm in diameter were built to clean ammonia emission from composter, respectively. The manure compost biofilter media in the three experimental vessels was using a 50:50 by weight mixture of manure compost and coconut peels (MC/CP). The ammonia concentrations at the inlet and outlet biofilter media were measured by boric acid traps as described by Hong et al. [Hong, J.H., Keener, H.M., Elwell, D.L., 1998. Preliminary study of the effect of continuous and intermittent aeration on composting hog manure amended with sawdust. Compost Science and Utilization 6 (3), 74-88]. Results indicated that the mixture of MC/CP performed well as a biofilter media and the ammonia removal efficiency was 100% for the filter depth of 500 mm.  相似文献   

5.
Industrial waste gas emissions containing pyridine are generated from pyridine manufacturing industries, and in industrial operations where pyridine is used as a solvent, as an intermediate for synthesis and as a catalyst for a variety of applications. Pyridine has unpleasant fishy odor with an odor index of 2390 and waste gaseous emissions containing pyridine require proper treatment prior to discharge. A biofilter, packed with compost and wood chips and inoculated with Pseudomonas pseudoalcaligenes-KPN for enrichment of pyridine-degrading microorganisms, was operated on a continuous feed basis for a period of more than 2 years. The results indicate that the biofilter medium with optimal moisture content of 68% and an effective bed retention time (EBRT) of 28.50s could degrade pyridine effectively (>99%) at a loading of 434 g pyridine m(-3)h(-1). The treated waste gas was also found to be free from pyridine odor.  相似文献   

6.
A trickle‐bed air biofilter (TBAB) was evaluated under conditions of interchanging the feed volatile organic compounds (VOCs) in the sequence methyl ethyl ketone (MEK), toluene, methyl isobutyl ketone (MIBK), styrene, and then back to MEK. The obtained performance results revealed that the biofilter provided high removal efficiency within the critical loading of each VOC, which was previously defined in the non‐interchanging VOC fed biofilter. The biofilter easily acclimated to the oxygenated compounds (MEK and MIBK), but re‐acclimation was delayed for the aromatic compounds (toluene and styrene). Ratios of the molar mass of CO2 produced per molar mass of VOC removed were investigated. It has been found that the ratios for the aromatic compounds closely resembled the theoretical complete chemical oxidation based ratios while larger differences were encountered with the oxygenated compounds. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes was used to assess the impact of interchanging VOCs on the bacterial community structure in the biofilter. The results from denaturing gradient gel electrophoresis (DGGE) showed that the structure of the microbial community in the biofilter was different after each interchange of VOCs.  相似文献   

7.
Biofilters operated for the microbial oxidation of landfill methane at two sites in Northern Germany were analysed for the composition of their methanotrophic community by means of diagnostic microarray targeting the pmoA gene of methanotrophs. The gas emitted from site Francop (FR) contained the typical principal components (CH4, CO2, N2) only, while the gas at the second site Müggenburger Strasse (MU) was additionally charged with non-methane volatile organic compounds (NMVOCs). Methane oxidation activity measured at 22 degrees C varied between 7 and 103 microg CH4 (g dw)(-1) h(-1) at site FR and between 0.9 and 21 microg CH4 (g dw)(-1) h(-1) at site MU, depending on the depth considered. The calculated size of the active methanotrophic population varied between 3 x 10(9) and 5 x 10(11) cells (g dw)(-1) for biofilter FR and 4 x 10(8) to 1 x 10(10) cells (g dw)(-1) for biofilter MU. The methanotrophic community in both biofilters as well as the methanotrophs present in the landfill gas at site FR was strongly dominated by type II organisms, presumably as a result of high methane loads, low copper concentration and low nitrogen availability. Within each biofilter, community composition differed markedly with depth, reflecting either the different conditions of diffusive oxygen supply or the properties of the two layers of materials used in the filters or both. The two biofilter communities differed significantly. Type I methanotrophs were detected in biofilter FR but not in biofilter MU. The type II community in biofilter FR was dominated by Methylocystis species, whereas the biofilter at site MU hosted a high abundance of Methylosinus species while showing less overall methanotroph diversity. It is speculated that the differing composition of the type II population at site MU is driven by the presence of NMVOCs in the landfill gas fed to the biofilter, selecting for organisms capable of co-oxidative degradation of these compounds.  相似文献   

8.
Compost extract or “compost tea” is a liquid extract of compost obtained by mixing compost and water for a defined period of time. Compost tea contains nutrients and a range of different organisms and is applied to the soil or directly to plants with the principal aim of suppressing certain plant diseases. In addition, the application of compost tea supplies nutrients and organic matter to the soil. Thermal analysis and Fourier transform infrared spectroscopy (FTIR) are two widely applied analytical techniques for establishing the stability of compost, and although numerous studies have evaluated the capacity of compost tea to suppress plant diseases, there are no studies employing these techniques to characterize compost-tea. For the present study, 12 compost extracts were produced under varying conditions in a purpose-built reactor. Two different composts, an stable compost produced from manure and an unstable compost produced from municipal solid waste, respectively, two aeration systems (aerated and non-aerated extracts) and three temperatures (10, 20 and 30°C) were used in these experiments. The extracts were freeze-dried and subsequently analysed, together with the two composts, by means of FTIR and thermal analysis. Extracts produced from high stability compost, independently of the conditions of aeration and temperature, showed very similar results. In contrast, differences among extracts produced from the unstable compost were more noticeable. However, the different conditions of aeration and temperature during the production of the extracts only explained partially these differences, since the transformations undergone by compost over the 3 months that the experiments lasted were also reflected in the composition of the extracts. In spite of everything, extraction process favoured the degradation of easily oxidizable organic matter, which was more abundant in unstable compost. This degradation was more intense for non-aerated processes, probably due to the longer duration of these (10 days) with respect to aerated extractions (2 days). The effect of temperature was not clear in these experiments, although high temperatures could increase micro organism activity and consequently favour the degradation of easily oxidizable organic matter.  相似文献   

9.
In recent years, biofiltration has been increasingly applied as an air pollution control technology to minimize or eliminate emissions of volatile organic compounds from industrial sources and environmental remediation activities. Although the ability of this technology to maintain high removal efficiency during relatively steady loading conditions has been well established for many waste streams, relatively little research has focused on development of operating strategies that could improve treatment performance during transient loading conditions typical of industrial operations. In the research described herein, two operating strategies were evaluated over a period of 295 days in biofilters treating a model waste gas stream containing a two-component mixture of methyl ethyl ketone (MEK) and toluene. One biofilter was operated as a sequencing batch biofilter (SBB), and the other was operated as a conventional continuous-flow biofilter (CFB). During "normal" steady loading conditions, the model waste stream contained MEK concentrations ranging from 80 to 89 ppmv and toluene concentrations ranging from 28 to 30 ppmv. Both biofilter operating strategies resulted in stable long-term performance with greater than 99% contaminant removal during these normal loading conditions. On a regular basis, the influent MEK and toluene concentrations were temporarily increased to five times the normal influent concentration for the duration of 1 h to test performance during transient "shock loading" conditions. Biofilter performance during the model shock loading conditions demonstrate that SBB operating strategies can result in superior treatment in two important areas: (1) overall mass of contaminants removed and (2) minimum instantaneous removal efficiency.  相似文献   

10.
A tailor-made apparatus called ammoniometer, which is a batch mode respirometer applied to the study of ammonia biodegradation in biofilter media, has been used to evaluate adsorption, absorption, and biodegradation in five different organic materials (compost, coconut fibre, bark, pruning wastes, and peat) obtained from full-scale biofilters in operation in several waste treatment plants. The results showed that absorption could be represented by a Henry's law linear equation, with values of the Henry coefficient significantly higher (from 1,866 to 15,320) than that of pure water (1,498). Adsorption data were successfully fitted to Langmuir and Freundlich isotherms and maximum adsorption capacity varies from 1.06 to 1.81 mg NH(3)/g dry media. Ammonia biodegradation rates for each organic material were also calculated. Biodegradation rates varied from 0.67 to 7.82 mg NH(3)/kg media/d depending on the material tested. The data obtained showed important differences in the behaviour of the biofilter organic media, which has important implications in the design and modelling of these systems.  相似文献   

11.
We performed a macrokinetic and quantitative microbial investigation of a continuously operating bench-scale biofilter treating styrene-polluted gases. The device was filled with a mixture of peat and glass beads as packing medium and inoculated with the styrene-oxidizing strain, Rhodococcus rhodochrous AL NCIMB 13259. The experimental data of styrene and microbial concentrations, obtained at different biofilter heights, were used to evaluate the pollutant concentration profiles as well as the influence of styrene loading on biomass distribution along the packing medium. Styrene and biomass concentration profiles permitted detection of a linear relationship between the amount of biomass grown in a given section of the biofilter and that of pollutant removed, regardless of the operating conditions tested. Biomass development in the bed appeared to: depend linearly on pollutant concentration at an inlet styrene concentration of <0.10 g m(-3) in the gaseous stream; achieve a maximum value (7. 10(7) colony forming units per gram of packing material) within a wide styrene concentration range (0.10 to 1.0 g m(-3)); and fall sharply beyond this inhibition threshold. The process followed zeroth-order macrokinetics with respect to styrene concentration, which is consistent with zeroth-order microkinetics with either fully active or not fully active biofilm. The maximal volumetric styrene removal rate was found to be 63 g m(packing material) (-3) h(-1) for an influent pollutant concentration of 0.80 g m(-3) and a superficial gas velocity of 245 m h(-1).  相似文献   

12.

The objectives of this study were to investigate the biodegradation of gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) in an activated carbon biofilter inoculated with phenol-oxidizing microorganisms and to study the effect of surfactant concentration below its critical micelle concentration (CMC) on the removal efficiency of TCE or PCE. For the enhanced biofiltration, a biodegradable nonionic surfactant was added to biofilters. The investigation was conducted using two specially built stainless steel biofilters, one for TCE and the other for PCE.

The removal efficiency of gaseous TCE was 100% at a residence time of 7?min and its average inlet concentration of 85?ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4–7?min and its average concentrations of 47–84?ppm. It was found that adsorption by GAC and absorption by influent nutrient solution were a minor or negligible mechanism for TCE and PCE removal in the activated carbon biofilters. The TCE and PCE activated carbon biofilter performances were observed to be a little enhanced but not significantly, when the surfactant was introduced at concentrations of 5–50?mg/l. Surfactant concentrations of 5–15?mg/l were found to be an optimal dosage in the biofilter operation for avoiding significant residual in the effluent from biofilters.

  相似文献   

13.
A steady state model was developed to predict water movement within the biofilter bed. The model’s predictions were compared to experimental data from a downward flow biofilter (50 cm×10 cm i.d.) using compost for removing methanol with concentrations in the range of 0.46–8.41 g m−3 and flow rates of 1.36–4.08 m3 per day. The Wani et al. [J. Chem. Technol. Biotechnol. 74 (1999) 9] method of macrokinetic determination was used to estimate the kinetic parameters, and the predicted results showed that this method could be used for methanol removal systems as long as the conversion rate is not limited by diffusion in the biofilm (reaction-controlled regime). The leachate from the biofilter was collected and compared to the model predictions. The amount of collected water increased much more rapidly with inlet methanol concentration than predicted by the model. This shows that there are effects that are not adequately taken into account, such as the breakdown of compost, or biofilm, resulting in loss of water holding capacity, formation of new biofilm, and changes in physical structure. However, this model can be used to estimate the amount of water to be added to ensure that biofilm activity is maximized.  相似文献   

14.
The microbial communities established in three laboratory-scale compost matrix biofilters fed with toluene were characterized. The biofilters were operated for 7 weeks at inlet concentrations of toluene ranging over 250-500 ppm with daily irrigation, using a nutrient solution containing variable concentrations of nitrogen, supplied as urea, and other inorganic salts. The indigenous microflora of the compost included toluene-degrading species, making inoculation unnecessary. The numerically predominant toluene-degrading strains were isolated from the most diluted positive wells of most-probable-number counts on mineral medium with toluene as sole carbon source and identified by rRNA 16S gene sequencing. On the basis of sequence similarity, all the isolated strains were assigned to the species Pseudomonas putida, although some variations were observed in their respective sequences. It is concluded that the mode of biofilter operation including a daily supply of non-carbon nutrients created an environment favoring the constant numerical predominance of this fast-growing toluene-degrading species.  相似文献   

15.
Fluctuations in contaminant concentrations often adversely influence the effectiveness of bioreactors for waste gas treatment. Application of an adsorbent to minimize such fluctuations could improve the overall process. Therefore the buffer capacity of a number of activated carbons and other adsorbents was tested. The buffer capacity of the adsorbents depends on the desired concentration range of the contaminants entering the bioreactor and on the time available for desorption. When fluctuations between 0 and 1000 mg toluene m–3 were applied to a biofilter this resulted in significant concentrations of toluene leaving the biofilter. Using one selected type of activated carbon it was demonstrated that these fluctuations could be decreased to a value of about 300 mg m–3, which subsequently completely degraded in the biofilter.  相似文献   

16.
Corky root disease of tomato caused by Pyrenochaeta lycopersici is an economically important disease in organic tomato production. This study aimed to evaluate the effects of various composts consisting of green manure, garden waste and horse manure against corky root disease through bioassay under greenhouse conditions, where soil naturally infested with P. lycopersici was used as a root substrate. The various composts were mixed at a rate of 20% (v/v) with the infested soil. Disease severity (measured as infected roots) in the unamended soil was compared with that in the soil–compost mixtures. One of the composts made from garden waste significantly reduced the disease, whereas horse manure compost significantly stimulated it. Lower concentrations of NH4‐N and total carbon and a higher concentration of Ca in the substrate were correlated with lower level of corky root disease. Addition of green manure or garden waste compost to the infested soil increased total microbial activity or population density of copiotrophic bacteria and actinomycetes, respectively. However, increased microbial activity or microbial population in soil–compost mixtures was not associated with a reduction in corky root disease severity in the present study.  相似文献   

17.
Butyl acetate and xylene mixtures are commonly encountered from the manufacture of semi‐conductor or opto‐electronic apparatuses. The release of these substances into the ambient air may have a negative effect on the air quality. This study attempts to employ a trickle‐bed air biofilter for treating butyl acetate and xylene mixtures under different gas flow rates and influent concentrations. Almost complete VOC removal could be attained with influent carbon loadings of BA (butyl acetate) and X (xylene) below 40 and 15 g/m3h, respectively. As the influent carbon loadings of BA and X were increased up to 150 and 110 g/m3h, removal efficiencies higher than 80 % were achieved. Therefore, the trickle‐bed air biofilter (TBAB) appeared efficient in the control of emissions containing mixtures of butyl acetate and xylene with low to medium carbon loadings. The removal efficiencies of butyl acetate were higher than those of xylene, indicating that butyl acetate was the substrate preferred in the utilization of butyl acetate and xylene mixtures by the microorganisms. Carbon recoveries of 98–101 % were achieved, demonstrating the accuracy of results. The carbon mass rate of the liquid effluent was approximately two to three orders of magnitude less than that of the CO2 effluent, indicating that the dissolved VOCs and their derivatives in the leachate were present in a negligible amount in the reactor. Applicable operating conditions of the TBAB unit for treating BA and X mixtures were suggested.  相似文献   

18.
The potential denitrification activity and the composition of the denitrifying bacterial community in a full-scale rockwool biofilter used for treating livestock manure composting emissions were analyzed. Packing material sampled from the rockwool biofilter was anoxically batch-incubated with 15N-labeled nitrate in the presence of different electron donors (compost extract, ammonium, hydrogen sulfide, propionate, and acetate), and responses were compared with those of activated sludge from a livestock wastewater treatment facility. Overnight batch-incubation showed that potential denitrification activity for the rockwool samples was higher with added compost extract than with other potential electron donors. The number of 16S rRNA and nosZ genes in the rockwool samples were in the range of 1.64–3.27 × 109 and 0.28–2.27 × 108 copies/g dry, respectively. Denaturing gradient gel electrophoresis analysis targeting nirK, nirS, and nosZ genes indicated that the distribution of nir genes was spread in a vertical direction and the distribution of nosZ genes was spread horizontally within the biofilter. The corresponding denitrifying enzymes were mainly related to those from Phyllobacteriaceae, Bradyrhizobiaceae, and Alcaligenaceae bacteria and to environmental clones retrieved from agricultural soil, activated sludge, freshwater environments, and guts of earthworms or other invertebrates. A nosZ gene fragment having 99% nucleotide sequence identity with that of Oligotropha carboxidovorans was also detected. Some nirK fragments were related to NirK from micro-aerobic environments. Thus, denitrification in this full-scale rockwool biofilter might be achieved by a consortium of denitrifying bacteria adapted to the intensely aerated ecosystem and utilizing mainly organic matter supplied by the livestock manure composting waste-gas stream.  相似文献   

19.
Composting of tannery effluent with cow manure and wheat straw   总被引:4,自引:0,他引:4  
Wastewater from the leather industry in León (Guanajuato, México) is discharged into the Turbio river without treatment. Tannery wastewater contains utilizable nutrients, but also toxic organic compounds which might affect soil processes and plant growth, and pathogens, which might pose a threat to the local farming community. Tannery effluent was composted with cow manure and wheat straw for 90 days to reduce pathogens and toxic organic compounds and monitored. The compost was characterized by an electrolytic conductivity (EC) of 28.1 ms cm(-1), cation exchange capacity of 17.7 meq 100 g(-1), an absorbance at 645 nm of 0.0175, a respiration rate of 0.062 mg CO2-C kg(-1) compost-C day(-1), pH 8.5 and C:N ratio 7:1 with a germination index for cress (Lepidium sativum) of 48% after 90 days. Less than 10 faecal coliforms and no Salmonella sp., Shigella sp. or eggs of helminthes were detected in the compost while total coliforms decreased by log10 of 2. Total concentrations of lead (Pb) were 8.9 mgkg(-1) dry compost, chromium (Cr) 77 mg kg(-1) dry compost, cadmium (Cd) 0.4 mg kg(-1) dry compost, copper (Cu) 10.3 mg kg(-1) dry compost and sodium (Na) 14,377 mg kg(-1) dry compost. The compost characteristics indicated that it was mature, but the germination index for cress of less than 50% suggested possible remaining phytotoxic compounds. However, the large salt concentrations (especially Na), might have inhibited cress development and thus reduced the germination index. The large salt concentration might thus limit the use of this kind of compost.  相似文献   

20.
Pathogen attack and herbivore infestation have a major impact on plant health. In a model study, these two plant health issues were simulated to study whether plant health can be monitored at greenhouse scale through the analysis of volatile organic compounds (VOCs) in greenhouse atmosphere. To simulate pathogen attack and herbivore infestation, we repeatedly stroked the stems of tomato plants ( Lycopersicon esculentum ) and repeatedly removed their side shoots. In addition, we studied the effect of fruit picking on the concentration of plant-emitted VOCs in greenhouse atmosphere. Analysis of air samples obtained before these treatments revealed up to 17 VOCs that are known to be released from tomato plants, of which the most dominant one was the monoterpene β-phellandrene. When plants were 7 weeks old, the concentration of this VOC was approximately 0.06 ppbv before treatment. When plants were 12 weeks old, this concentration was raised to approximately 0.14 ppbv. Stroking of the stems, removing the side shoots and fruit picking resulted in an increase in the concentrations of all mono- and most sesquiterpenes up to 60-fold, which was expected because these VOCs are well-known constituents of trichomes. The treatments did not result in substantially increased concentrations of the stress-related compounds α-copaene, methyl salicylate and ( E,E )-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast to stroking and fruit picking, shoot removal resulted in the emission of the lipoxygenase-derived product ( Z )-3-hexenol in greenhouse atmosphere expressing cell membrane degradation. The findings presented in this paper focus on the feasibility of monitoring plant health through the analysis of VOCs in greenhouse air, but findings might also be relevant for atmospheric chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号