首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We examined the rapid effects of corticosterone (CORT) on N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ signals in adult mouse hippocampal slices by using Ca2+ imaging technique. Application of NMDA caused a transient elevation of intracellular Ca2+ concentration followed by a decay to a plateau within 150s. The 30min preincubation of CORT induced a significant decrease of the peak amplitude of NMDA-induced Ca2+ elevation in the CA1 region. The rapid effect of CORT was induced at a stress-induced level (0.4-10microM). Because the membrane non-permeable bovine serum albumin-conjugated CORT also induced a similar rapid effect, the rapid effect of CORT might be induced via putative surface CORT receptors. In contrast, CORT induced no significant effects on NMDA-induced Ca2+ elevation in the dentate gyrus. In the CA3 region, CORT effects were not evaluated, because the marked elevation of NMDA-induced Ca2+ signals was not observed there.  相似文献   

2.
The effect of thrombin on the rat hippocampal neurons death in model of neurotoxicity induced by hemoglobin or glutamate, was studied. Thrombin (10 nM) was shown to inhibit 100-mkM glutamate--or 10-mkM hemoglobin-induced apoptosis of the rat hippocampal neurons. With the aid of PAR1 (protease-activated receptor1) agonist peptide and PAR1 antagonist, the PAR1 was found to be necessary for protective action of thrombin in hippocampal neurons in models of neurotoxicity induced by hemoglobin or glutamate. Because the prolonged elevation [Ca2+] ib neurons is a critical part of neurodestructive processes in CNS, the effect of thrombin on Ca2+-homeostatis of neurons after its injury by the inducer of neuronal apoptosis: a synthetic agonist of the NMDA receptors N-methyl-D-aspartate (NMDA), was studied. We hypothesized that thrombin via receptors PAR may prove to be neuroprotective for the hippocampus. Thrombin was shown to stimulate via PAR1 a transient increase in [Ca2+] in neurons in a concentration-dependent manner. Thrombin (1 nM) decreased the [Ca2+] signal induced by activation of the NMDA-subtype of glutamate receptors. This thrombin effect may be one of the reasons of the protective action of thrombin in hippocampal neurons.  相似文献   

3.
The effects of 30 s to 10 min hypoxia (PO2-10 mmHg) on glutamate receptor activity were studied in murine cortical neurons. Receptor activity was assessed as a rise in intracellular calcium concentration ([Ca2+]i) following a 10 s application of 1 mm glutamate or 100 micro mN-methy-d-aspartate (NMDA) in the presence of 0.1 mm Mg2+ and 10 micro m glycine. Change in [Ca2+]i elicited by glutamate increased 26% (n = 192, p < 0.001) and that to NMDA by 74% (n = 9, p < 0.01) during a 100-s period of hypoxia. After 10 min hypoxia, responses to glutamate were 62% smaller than those in normoxia, with increased basal intracellular [Ca2+]i predicting reduced receptor activity. When neurons were exposed to NMDA after 10 min of hypoxia, [Ca2+]i increases were 12% smaller than after 100 s hypoxia, but still 53% larger than in oxygenated neurons (n = 9, p = 0.01). Neurons expressed relatively similar amounts of NR2A, -B, -C, and -D subunits. The phosphorylation of NMDA NR1 subunits increased during hypoxia. Pre-treatment of neurons with a protein kinase C (PKC) inhibitor (chelerythrine, 10 micro m) prevented increases in N-methy-d-aspartate receptor (NMDAR) activity during hypoxia and reduced the phosphorylation of NR1 subunits. These results suggest that enhancement of glutamate receptor activity during the first minutes of hypoxia is mediated by phosphorylation of NMDARs by PKC and that other mechanisms, possibly involving intracellular calcium, limit glutamate receptor-mediated calcium influx during longer periods of hypoxia.  相似文献   

4.
目的研究皮质酮对大鼠海马神经元的毒性作用及NMDA受体亚基表达的影响.方法以体外原代培养的大鼠海马神经元为研究对象,根据影响因素,即给予的不同浓度皮质酮和其它因素分为8个组:对照组、10-7mol/L皮质酮组(简称10-7组)、10-6mol/L皮质酮组(简称10-6组)、10-5mol/L皮质酮组(简称10-5组)、10-6 高糖组、10-5 高糖组、10-6mol/L MK801组和10-5mol/L MK801组,镜下观察不同浓度皮质酮作用下海马神经元形态学的变化,并采用MTT方法测量各组细胞存活率,利用免疫细胞化学结合图象分析对原代培养海马神经元NMDA受体亚基的表达进行观察.结果 10-6、10-5浓度的皮质酮对海马神经元影响较大,细胞存活率较对照组明显降低,但10-6 高糖组、 10-5mol/L 高糖组、10-6mol/L MK801及10-5mol/L MK801 4个组,分别与相同皮质酮浓度处理组比较,细胞存活率显著提高.10-6和10-5组海马神经元上NMDA受体亚基表达较对照组明显降低.10-7mol/L浓度的皮质酮对上述指标影响不大.结论过量的皮质酮对大鼠海马神经元具有损伤作用,NMDA受体参与了此过程,NMDA受体拮抗剂和高浓度葡萄糖可保护海马神经元.  相似文献   

5.
Kinases and phosphatases act antagonistically to maintain physiological phosphorylation/dephosphorylation at numerous intracellular sites critical for neuronal signalling. In this study, it was found that inhibition of serine/threonine phosphatases by exposure of hippocampal slices to okadaic acid (OA) or cantharidin (CA; 100 nmol/L) for 2 h resulted in reduced basal synaptic transmission and blocked the induction of synaptic plasticity in the form of long-term potentiation as determined by electrophysiological analysis. Fura-2 Ca(2+) imaging revealed a bidirectional modulation of N-methyl-D-aspartate (NMDA) -mediated Ca(2+) responses and reduced KCl-mediated Ca(2+) responses in neonatal cultured hippocampal neurons after phosphatase inhibition. While OA inhibited NMDA-induced Ca(2+) influx both acutely and after incubation, CA-enhanced receptor-mediated Ca(2+) signalling at low concentrations (1 nmol/L) but reduced NMDA and KCl-mediated Ca(2+) responses at higher concentrations (100 nmol/L). Changes in Ca(2+) signalling were accompanied by increased phosphorylation of cytoskeletal proteins tau and neurofilament and the NMDA receptor subunit NR1 in selective treatments. Incubation with OA (100 nmol/L) also led to the disruption of the microtubule network. This study highlights novel signalling effects of prolonged inhibition of protein phosphatases and suggests reduced post-synaptic signalling as a major mechanism for basal synaptic transmission and long-term potentiation impairments.  相似文献   

6.
Fura-2 imaging of purinergic stimulation of non-differentiated neuronal human SH-SY5Y cells resulted in a rapid elevation in intracellular Ca2+ ([Ca2+]i) that was dependent on extracellular Ca2+. The rank order of agonists (200 micro m) was as follows: 2',3'-O-(4-benzoyl-benzoyl)-ATP (BzATP) > ATP4- > ATP; whereas 2-(methylthio)-ATP, ADP, UTP and alpha,beta-methylene-ATP and beta,gamma-methylene-ATP were ineffective. The response to BzATP was inhibited by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic-acid (PPADS, 1 micro m), 1-(N,O-bis[5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl)-4-phenylpiperazine (KN-62, 100 nm) and 8-(3-benzamido-4-4-methylbenzamido)-naphthalene-1,3,5-trisulfonic-acid (suramin, 200 micro m). The presence of a P2X7 receptor was confirmed by western blot studies using anti-P2X7. EC50 for BzATP was 212 +/- 6 micro m. BzATP > 30 micro m induced an initial, transient increase in [Ca2+]i before a plateau level was reached. BzATP < 30 micro m only produced a monophasic increase to the plateau level. The transient phase was reduced by the introduction of nimodipine (3 micro m) and to a smaller degree by omega-conotoxin GVIA (1 micro m) despite an almost equal presence of L and N-type Ca2+-channels. In whole-cell voltage-clamp studies at - 90 mV, BzATP (300 micro m) produced a fast activating inward current with a similar pharmacology as observed with Fura-2 imaging. Current clamp studies showed a dose-dependent depolarization to BzATP and ATP4-. BzATP also triggered transmitter release. Thus, the human neuronal SH-SY5Y cell line expresses a functional P2X7 receptor coupled to activation of Ca2+-channels.  相似文献   

7.
本研究的目的在于探讨产前应激对子代大鼠海马CA3神经元高电压激活(HVA)钙通道、延迟整流钾电流(delayedrectifierpotassiumcurrents,IKD)的影响。产前应激(prenatalstress,PNS)组孕鼠孕晚期给予束缚应激,应用全细胞膜片钳技术进行研究。结果显示产前应激增加了子代海马CA3神经元HVA钙通道峰电流幅值,对照组和产前应激组子代CA3神经元平均最大HVA钙电流峰值分别为-576.52±7.03pA和-702.05±6.82pA(P<0.01)。同时未改变其电导-电压关系,也未改变延迟整流钾通道电流-电压关系、电导-电压关系。结果提示,在胎儿发育的关键时期,给予母体产前应激,引起子代海马神经元HVA钙电流增加,其机制一方面PNS导致皮质酮升高,从而可能增加HVA钙通道mRNA表达;另一方面PNS所致反应性氧化产物(reactiveoxygenspecies,ROS)增多,后者可能通过磷酸化HVACa2 通道亚单位,从而提高HVA钙电流幅值。  相似文献   

8.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

9.
In the present study, we have examined the effects of prolonged (up to 72 h) inhibition of high-affinity glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC; 100 microM) on glutamate receptor functions in primary cultures of rat cerebellar granule neurons. This was done by comparing the effects of various glutamate receptor agonists on neuronal 45Ca2+ uptake, free cytoplasmic Ca2+ concentration ([Ca2+]i), and cell viability. We also determined the parameters of[3H]MK-801 binding as well as the expression of the NMDAR1 subunit protein in control and PDC-exposed cultures. The blockade of glutamate reuptake by PDC led to a gradual increase of ambient glutamate to concentrations that are neurotoxic when applied acutely to control cells. In PDC-exposed cells, however, the acute glutamate-induced NMDA receptor-mediated calcium fluxes were strongly diminished and no toxicity was observed. The down-regulation of the functional effects of glutamate was dependent on the duration of PDC exposure and was accompanied by a reduced NMDAR1 subunit expression and decreased [3H]MK-801 binding, indicative of a pronounced structural rearrangement of NMDA receptors. The possibility that the decrease of NMDA glutamate receptor sensitivity can be explained on the basis of a reduced density or altered subunit composition of NMDA receptors is discussed.  相似文献   

10.
Geng ZH  Cheng YY  Ma XL  Li ST 《生理学报》2003,55(6):736-741
探讨皮质酮对原代培养大鼠海马神经元的损伤效应及锌的调节作用。用原位染色和RT-PCR方法,分别检测神经元的损伤情况及NMDA受体三种亚基(NRl、NR2A、NR2B)mRNA的表达。皮质酮(5μmol/L)作用2,4h可明显降低海马神经元的存活率,导致神经元凋亡,并随着作用时间的延长而加重;锌离子明显影响皮质酮对海马神经元的损伤效应:同时加入皮质酮和低、中浓度Zn^2 (10、100μmol/L),可明显降低神经元凋亡率,而加入高浓度Zn^2 (250μmol/L)则加重神经元损伤。皮质酮作用24h后,海马神经元NRl、NR2BmRNA的表达水平增高,而同时加入低、中浓度Zn^2 (10、100μmol/L)的海马神经元NRl、NR2BmRNA表达水平与对照组接近;NR2AmRNA表达无明显变化。这些结果表明,锌对皮质酮所致应激损伤的调节具有双向性;NMDA受体亚基水平的变化可能是其中重要环节之一。  相似文献   

11.
We investigated a possible role of nifedipine-insensitive high voltage-activated (NI-HVA) Ca2+ channels in arterial diameter regulation in the semi-terminal branches of rabbit mesenteric artery (RMA). From these branches, NI-HVA Ca2+ currents showing almost identical properties to those previously identified in a similar region of guinea-pig [Circulation Research 1999;85:596-605] were recorded with whole-cell patch clamp recording. With video-microscopic measurement, the diameter of RMA segments perfused intraluminally at a constant rate (2-6 mL/h; 269 +/- 9 micro m, n = 27) decreased by 50-60% by raising the external K+ concentration ([K+]o) to 75 mM, a substantial part of which remained after addition of 1-10 micro M nifedipine (44 +/- 5% of initial diameter, n = 27). This nifedipine-insensitive diameter decrease (NI-DD) appeared to consist of initial transient and subsequent tonic phases (this separation was, however, not always clear), was resistant to tetrodotoxin, and was completely abolished in Ca2+-free or 100 micro M Cd2+-containing bath solutions. The magnitude of NI-DD increased depending on [K+]o with a threshold concentration of 20-40 mM. Raising the external Ca2+ concentration dose-dependently increased the magnitude of NI-DD, the extent being more prominent in the late tonic phase. Combined application of caffeine (10 mM) with ryanodine (3 micro M) produced a large transient NI-DD, which strongly attenuated the NI-DD evoked by a subsequent elevation in [K+]o. Using the fura-2 spectrofluorimetric Ca2+ imaging technique, a nifedipine-insensitive [Ca2+]i increase showing similar [K+]o-dependence and Cd2+ sensitivity to NI-DD was observed. These properties of NI-DD accord with those of NI-HVA Ca2+ channels, thus suggesting their contribution to small arterial diameter regulation in RMA.  相似文献   

12.
ATP produces a variety of Ca2+ responses in astrocytes. To address the complex spatio-temporal Ca2+ signals, we analyzed the ATP-evoked increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured rat hippocampal astrocytes using fura-2 or fluo-3 based Ca2+ imaging techniques. ATP at less than 10 nM produced elementary Ca2+ release event "puffs" in a manner independent of extracellular Ca2+. Stimulation with higher ATP concentrations (3 or 10 micro M) resulted in global Ca2+ responses such as intercellular Ca2+ wave. These Ca2+ responses were mainly mediated by metabotropic P2Y receptors. ATP acting on both P2Y1 and P2Y2 receptors produced a transient Ca2+ release by inositol 1,4,5-trisphosphate (InsP3). When cells were stimulated with ATP much longer, the transient [Ca2+]i elevation was followed by sustained Ca2+ entry from the extracellular space. This sustained rise in [Ca2+]i was inhibited by Zn2+ (<10 micro M), an inhibitor of capacitative Ca2+ entry (CCE). CCE induced by cyclopiazonic acid or thapsigargin and Ca2+ entry evoked by ATP share the same pharmacological profile in astrocytes. Taken together, the hierarchical Ca2+ responses to ATP were observed in hippocampal astrocytes, i.e., puffs, global Ca2+ release by InsP3, and CCE in response to depletion of InsP3-sensitive Ca2+ stores. It should be noted that these Ca2+ signals and their modulation by Zn2+ could occur in the hippocampus in situ since both ATP and Zn2+ are rich in the hippocampus and could be released by excitatory stimulation.  相似文献   

13.
The effect of Pb2+ on glutamate receptor activity in rat hippocampal neurons was investigated with a view of explaining the cognitive and learning deficits produced by this heavy metal. Pb2+ (2.5-50 microM) selectively inhibited N-methyl-D-aspartate (NMDA)-induced whole-cell and single-channel currents in a concentration-dependent but voltage-independent manner, without significantly altering currents induced by either quisqualate or kainate. The frequency of NMDA-induced channel activation was decreased by Pb2+. Neither glycine (10-100 microM), nor Ca2+ (10 mM) reversed the effect of Pb2+. Pb2+ also inhibited the [3H]MK-801 binding to rat hippocampal membranes in vitro. The elucidation of the actions of Pb2+ on the NMDA receptor ion channel complex provides important insights into the clinical and toxic effects of this cation.  相似文献   

14.
Here, we show that disruption of N-ethylmaleimide-sensitive fusion protein- (NSF-) GluR2 interaction by infusion into cultured hippocampal neurons of a blocking peptide (pep2m) caused a rapid decrease in the frequency but no change in the amplitude of AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs). N-methyl-D-aspartate (NMDA) receptor-mediated mEPSCs were not changed. Viral expression of pep2m reduced the surface expression of alpha-amino-3-hydroxy-5-methyl-isoxazolepropionate (AMPA) receptors, whereas NMDA receptor surface expression in the same living cells was unchanged. In permeabilized neurons, the total amount of GluR2 immunoreactivity was unchanged, and a punctate distribution of GluR2 was observed throughout the dendritic tree. These data suggest that the NSF-GluR2 interaction is required for the surface expression of GluR2-containing AMPA receptors and that disruption of the interaction leads to the functional elimination of AMPA receptors at synapses.  相似文献   

15.
Abstract: Accumulation of intracellular Ca2+ is known to be critically important for the expression of NMDA receptor-mediated glutamate neurotoxicity. We have observed, however, that glutamate can also increase the neuronal intracellular Mg2+ concentration on activation of NMDA receptors. Here, we used conditions that elevate intracellular Mg2+ content independently of Ca2+ to investigate the potential role of Mg2+ in excitotoxicity in rat cortical neurons in vitro. In Ca2+-free solutions in which the Na+ was replaced by N -methyl- d -glucamine or Tris (but not choline), which also contained 9 m M Mg2+, exposure to 100 µ M glutamate or 200 µ M NMDA for 20 min produced delayed neuronal cell death. Neurotoxicity was correlated to the extracellular Mg2+ concentration and could be blocked by addition of NMDA receptor antagonists during, but not immediately following, agonist exposure. Finally, we observed that rat cortical neurons grown under different serum conditions develop an altered sensitivity to Mg2+-dependent NMDA receptor-mediated toxicity. Thus, the increase in intracellular Mg2+ concentration following NMDA receptor stimulation may be an underestimated component critical for the expression of certain forms of excitotoxic injury.  相似文献   

16.
Growth factor receptors provide a major mechanism for the activation of the nonreceptor tyrosine kinase c-Src, and this kinase in turn up-regulates the activity of N-methyl-D-aspartate (NMDA) receptors in CA1 hippocampal neurons (1). Unexpectedly, applications of platelet-derived growth factor (PDGF)-BB to cultured and isolated CA1 hippocampal neurons depressed NMDA-evoked currents. The PDGF-induced depression was blocked by a PDGF-selective tyrosine kinase inhibitor, by a selective inhibitor of phospholipase C-gamma, and by blocking the intracellular release of Ca(2+). Inhibitors of cAMP-dependent protein kinase (PKA) also eliminated the PDGF-induced depression, whereas a phosphodiesterase inhibitor enhanced it. The NMDA receptor-mediated component of excitatory synaptic currents was also inhibited by PDGF, and this inhibition was prevented by co-application of a PKA inhibitor. Src inhibitors also prevented this depression. In recordings from inside-out patches, the catalytic fragment of PKA did not itself alter NMDA single channel activity, but it blocked the up-regulation of these channels by a Src activator peptide. Thus, PDGF receptors depress NMDA channels through a Ca(2+)- and PKA-dependent inhibition of their modulation by c-Src.  相似文献   

17.

Background

Modulation of dendritic spines under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT) secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus.

Methodology/Principal Findings

Here we demonstrated the mechanisms of rapid effect (∼1 h) of CORT on the density and morphology of spines by imaging neurons in adult male rat hippocampal slices. The application of CORT at 100–1000 nM induced a rapid increase in the density of spines of CA1 pyramidal neurons. The density of small-head spines (0.2–0.4 µm) was increased even at low CORT levels (100–200 nM). The density of middle-head spines (0.4–0.5 µm) was increased at high CORT levels between 400–1000 nM. The density of large-head spines (0.5–1.0 µm) was increased only at 1000 nM CORT. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR), abolished the effect of CORT. Blocking a single kinase, such as MAPK, PKA, PKC or PI3K, suppressed CORT-induced enhancement of spinogenesis. Blocking NMDA receptors suppressed the CORT effect.

Conclusions/Significance

These results imply that stress levels of CORT (100–1000 nM) drive the spinogenesis via synaptic GR and multiple kinase pathways.  相似文献   

18.
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and synaptic glutamate release are blocked, and are found to be mediated by glutamate released from astrocytes acting preferentially on extrasynaptic NMDA receptors. The slow currents can be triggered by stimuli that evoke Ca2+ oscillations in astrocytes, including photolysis of caged Ca2+ in single astrocytes. As revealed by paired recording and Ca2+ imaging, a striking feature of this NMDA receptor response is that it occurs synchronously in multiple CA1 neurons. Our results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.  相似文献   

19.
Hippocampal pyramidal neurons and granule neurons of adult male rats are equipped with a complete machinery for the synthesis of pregnenolone, dehydroepiandrosterone, 17beta-estradiol and testosterone as well as their sulfate esters. These brain neurosteroids are synthesized by cytochrome P450s (P450scc, P45017alpha and P450arom) from endogenous cholesterol. Synthesis is acutely dependent on the Ca(2+) influx attendant upon neuron-neuron communication via N-methyl-D-aspartate (NMDA) receptors. Pregnenolone sulfate, estradiol and corticosterone rapidly modulate neuronal signal transduction and the induction of long-term potentiation via NMDA receptors and putative membrane steroid receptors. Brain neurosteroids are therefore promising neuromodulators that may either activate or inactivate neuron-neuron communication, thereby mediating learning and memory in the hippocampus.  相似文献   

20.
Fiumelli H  Cancedda L  Poo MM 《Neuron》2005,48(5):773-786
Activity-induced modification of GABAergic transmission contributes to the plasticity of neural circuits. In the present work we found that prolonged postsynaptic spiking of hippocampal neurons led to a shift in the reversal potential of GABA-induced Cl- currents (E(Cl)) toward positive levels in a duration- and frequency-dependent manner. This effect was abolished by blocking cytosolic Ca2+ elevation and mimicked by releasing Ca2+ from internal stores. Activity- and Ca2+-induced E(Cl) shifts were larger in mature neurons, which express the K-Cl cotransporter KCC2 at high levels, and inhibition of KCC2 occluded the shifts. Overexpression of KCC2 in young cultured neurons, which express lower levels of KCC2 and have a more positive E(Cl), resulted in hyperpolarized E(Cl) similar to that of mature cells. Importantly, these young KCC2-expressing neurons became responsive to neuronal spiking and Ca2+ elevation by showing positive E(Cl) shifts. Thus, repetitive postsynaptic spiking reduces the inhibitory action of GABA through a Ca2+-dependent downregulation of KCC2 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号