首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The annual dynamics of live and dead fine roots for trees and the field layer species and live/dead ratios were investigated at a coniferous fern forest (Picea abies L. Karts) in Sweden. Our methods of estimating the average amount of fine roots involved the periodic sampling of fine roots in sequential cores on four sampling occasions. The highest live/dead ratio was found in the upper part of the humus layer for both tree and field-layer species and decreased with depth. Most tree fine roots on the four sampling occasions were found in the mineral soil horizon, where 86, 81, 85 and 89% of <1 mm and 89, 88, 89 and 92% of <2 mm diameter of the total amounts of live fine roots in the soil profile were found. The mean amounts of live fine roots of tree species for the total soil profile on the four sampling occasions was 317, 150, 139 and 248 g m?2 for <1 mm and 410, 225, 224 and 351 g m?2 for <2 mm diameter fine roots. The related amount of dead fine roots was 226, 321, 176 and 299 g m?2 and 294, 424, 282 and 381 g m?2, respectively. Average amounts of live and dead fine-roots and live/dead ratios from other Picea abies forest ecosystems were within the range of our estimates. The production of fine roots, <1 and <2 mm in diameter, estimated from the annual increments in live fine roots, was 207 and 303 g m?2. The related accumulation of dead fine roots was 257 and 345 g m?2, The turnover rate of tree fine roots <1 mm in diameter in the total soil profile amounted to 0.7 yr?1 for live and 0.8 yr?1 for dead fine roots. The related turnover rates for tree fine roots <2 mm were 0.4 yr?1 and 0.7 yr?1. Our data, although based on minimum estimates of the annual fluxes of live and dead fine roots, suggests a carbon flow to the forest soil from dead fine-roots even more substantial than from the needle litter fall. Fine-root data from several Picea abies forest ecosystems, suggest high turnover rates of both live and dead tree fine-roots.  相似文献   

2.
The quantification of silicon (Si) uptake by tree species is a mandatory step to study the role of forest vegetations in the global cycle of Si. Forest tree species can impact the hydrological output of dissolved Si (DSi) through root induced weathering of silicates but also through Si uptake and restitution via litterfall. Here, monospecific stands of Douglas fir, Norway spruce, Black pine, European beech and oak established in identical soil and climate conditions were used to quantify Si uptake, immobilization and restitution. We measured the Si contents in various compartments of the soil–tree system and we further studied the impact of the recycling of Si by forest trees on the DSi pool. Si is mainly accumulated in leaves and needles in comparison with other tree compartments (branches, stembark and stemwood). The immobilization of Si in tree biomass represents less than 15% of the total Si uptake. Annual Si uptake by oak and European beech stands is 18.5 and 23.3 kg ha?1 year?1, respectively. Black pine has a very low annual Si uptake (2.3 kg ha?1 year?1) in comparison with Douglas fir (30.6 kg ha?1 year?1) and Norway spruce (43.5 kg ha?1 year?1). The recycling of Si by forest trees plays a major role in the continental Si cycle since tree species greatly influence the uptake and restitution of Si. Moreover, we remark that the annual tree uptake is negatively correlated with the annual DSi output at 60 cm depth. The land–ocean fluxes of DSi are certainly influenced by geochemical processes such as weathering of primary minerals and formation of secondary minerals but also by biological processes such as root uptake.  相似文献   

3.
In forest ecosystems, the silicon (Si) mass-balance at the watershed scale can be strongly influenced by readily soluble Si components, such as dissolved Si, adsorbed Si, amorphous silica (biogenic and pedogenic opal) and short-range ordered aluminosilicates. The aim of the present study is to (a) identify the components of the readily soluble Si pool in the Cambisol found below three tree species, under homogeneous soil and climate conditions, and (b) study the impact of Si recycling by tree species on the Si pools. We therefore measured the concentrations of Si extracted by Na2CO3 (Sialk), oxalate (Siox) and CaCl2. The Sialk concentration decreased from the humus layer to 15 cm depth and then slightly increased until a depth of 75 cm. In the humus layer, the Sialk concentration consisted mainly of phytoliths and differed significantly between tree species (expressed as mg SiO2 g-1): Douglas fir (14.5?±?0.65) > European beech (11.8?±?0.30) > Black pine (5.4?±?0.31). Below 7.5 cm, the Sialk content did not differ significantly between tree species, and the Siox content, increasing significantly, was mainly comprised of Si adsorbed onto amorphous Fe oxides. These results suggest that (a) tree species can impact the readily soluble Si content in the topsoil, through different rates of Si uptake and phytolith restitution by the vegetation, and (b) the soil’s readily soluble Si pool is mainly comprised of phytoliths and adsorbed Si. Here, the readily soluble Si pool is thus controlled by both the iron dynamics and Si biocycling.  相似文献   

4.
Research related to the allometric relationships of tree height and projected tree crown area to diameter at breast height was conducted to look at the biological suitability and timber production potential of Douglas fir under the conditions present in central Europe. The dependence of allometric relationships on soil nutrient conditions were described in forest stands of Douglas fir and Norway spruce. The studied sites were climatically similar but differed in soil nutrient availability. A significant difference was found in the allometric relationships of Norway spruce trees from the nutrient poor and nutrient rich site. In contrast to the Norway spruce, there was no significant effect of site fertility on allometric relationships for Douglas fir suggesting that its allocation patterns were less sensitive to site nutrient conditions. Stem growth increment, which was measured weekly during two consecutive seasons for both species, was related to the weather conditions and available soil moisture. Stem growth of Douglas fir began about 2 weeks earlier than in the Norway spruce at both sites. At the nutrient rich site, most of the stem growth of both species occurred at the beginning of the season, while growth at the other site was more evenly distributed throughout the season. Data obtained in this study will be useful for modeling stem growth and analysis of water use efficiency of these two tree species.  相似文献   

5.

Aims

This study aimed to determine the influence of different harvest residue management strategies on tree growth, soil carbon (C) concentrations, soil nitrogen (N) availability and ecosystem C stocks 15 years after replanting second rotation Chinese fir (Cunninghamia lanceolata), an important plantation species in subtropical China. Such information is needed for designing improved management strategies for reforestation programmes in subtropical environments aimed at mitigating CO2 emissions.

Methods

Four harvest residue management treatments including slash burning, whole tree, stem-only and double residue retention were applied to sixteen 20 m?×?30 m plots in a randomized complete block design with four replicates. Tree growth was measured annually and soil properties were measured at 3 year intervals over a 15 year period after re-planting.

Results

Cumulative diameter growth at age 15 years was significantly smaller in the slash burning than the whole tree and double residue harvest treatments. Hot water extractable N concentrations increased with the increased organic residue retention levels and significant differences were observed between double residue and slash burning treatments. Harvest residue management had no significant effect on the soil C concentrations to 40 cm depth. ANOVA showed that harvest residue management had no significant effect on total biomass carbon at age 15, but the plantation ecosystem (soil C at 0–40 cm depth plus forest biomass C) had significantly lower C mass in the slash burning treatment compared with whole tree, stem only harvest and double residue harvest treatments.

Conclusions

These observations suggest that organic residue retention during the harvesting could improve the growth and ecosystem C stocks of Chinese fir in second rotation forest plantations in subtropical China and highlight the importance of viewing the ecosystem as a whole when evaluating the impact of harvest residue management on C stocks.  相似文献   

6.
Control of Nitrification by Tree Species in a Common-Garden Experiment   总被引:1,自引:0,他引:1  
We studied the effect of tree species on nitrification in five young plantations and an old native beech coppice forest at the Breuil experimental site in central France. The potential net nitrification (PNN) of soil was high in beech, Corsican pine, and Douglas fir plantations (high nitrifying stands denoted H) and low in spruce and Nordmann fir plantations as well as in native forest stands (low nitrifying stands denoted L). We hypothesized that tree species would stimulate or inhibit nitrification in transplanted soil cores within a few years after the cores were transplanted between stands. We first initiated a transplant experiment where soil cores were exchanged between all stands. The PNN remained high in soil cores from H transferred to H and low in soil cores from L transferred to L. The PNN increased considerably after 16 months in soil cores transferred from L to H, whereas the transfer of soil cores from H to L decreased the PNN only slightly after 28 months. In a second transplant experiment, forest floor material was exchanged between the Douglas fir (H) and the native forest (L) stand. Six months later, the forest floor from the native forest had increased the PNN of the Douglas fir soil considerably, whereas the forest floor from Douglas fir did not affect the PNN of the soil in the native forest stand. It was concluded that beech, Corsican pine, and Douglas fir rapidly stimulate soil nitrification by either activation of suppressed nitrifier communities and/or colonization by new nitrifier communities. Conversely, the slow and irregular reduction of nitrification in spruce, Nordmann fir, and native forest was probably due to the low and heterogeneously distributed flux of inhibiting substances per volume of soil. Our experiments suggest that the inhibition of nitrification is not tightly connected to forest floor leachates, but that the forest floor both reflects and maintains the major ongoing processes. In the long term, humus build up and the production of inhibiting substances may completely block the nitrification activity.  相似文献   

7.
We hypothesised that the decomposition rates of leaf litter will increase along a gradient of decreasing fraction of the European beech (Fagus sylvatica) and increasing tree species diversity in the generally beech-dominated Central European temperate deciduous forests due to an increase in litter quality. We studied the decomposition of leaf litter including its lignin fraction in monospecific (pure beech) stands and in stands with up to five tree genera (Acer spp., Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Tilia spp.) using a litterbag approach. Litter and lignin decomposition was more rapid in stand-representative litter from multispecific stands than in litter from pure beech stands. Except for beech litter, the decomposition rates of species-specific tree litter did not differ significantly among the stand types, but were most rapid in Fraxinus excelsior and slowest in beech in an interspecific comparison. Pairwise comparisons of the decomposition of beech litter with litter of the other tree species (except for Acer platanoides) revealed a “home field advantage” of up to 20% (more rapid litter decomposition in stands with a high fraction of its own species than in stands with a different tree species composition). Decomposition of stand-representative litter mixtures displayed additive characteristics, not significantly more rapid than predicted by the decomposition of litter from the individual tree species. Leaf litter decomposition rates were positively correlated with the initial N and Ca concentrations of the litter, and negatively with the initial C:N, C:P and lignin:N ratios. The results support our hypothesis that the overall decomposition rates are mainly influenced by the chemical composition of the individual litter species. Thus, the fraction of individual tree species in the species composition seems to be more important for the litter decomposition rates than tree species diversity itself.  相似文献   

8.
Relationships between tree parameters above ground and the biomass of the coarse root system were examined in six mixed spruce-beech stands in the Solling Mountain region in northwest Germany. The selected stands were located on comparable sites and covered an age range of 44 to 114 years. Coarse roots (d?\ge?2 mm) of 42 spruce and 27 beech trees were sampled by excavating the entire root system. A linear model with logarithmic transformation of the variables was developed to describe the relationship between the coarse root biomass (CRB, dry weight) and the corresponding tree diameter at breast height (DBH). The coefficients of determination (R 2) attained values between 0.92 for spruce and 0.94 for beech; the logarithmic standard deviation values were between 0.29 and 0.43. A significantly different effect of tree species on the model estimates could not be detected by an analysis of co-variance (ANCOVA). For spruce, the derived relationships were similar to those reported in previous studies, but not for beech. Biomass partitioning in the tree compartments above and below ground differs significantly between spruce (coarse root/shoot ratio 0.16±0.06) and beech (coarse root/shoot ratio 0.10±0.03) in the mixed stands. These results are similar to those given in other studies involving pure spruce and beech stands on comparable sites in the region, although the ratios of pure stands in other regions growing under different site conditions are somewhat higher. Comparing trees of the same DBH classes, root/shoot ratios of spruce are 1.2 to 3 times higher than those of beech. Dominant spruce trees (DBH>60 cm) attained the highest ratios, suppressed beech trees (DBH<10 cm) the lowest. Site conditions of varying climate and soils and interspecific tree competition are likely to affect root/shoot ratio and DBH-coarse root biomass relationships. The greater variability in beech compared with spruce indicates a high 'plasticity' and adaptability of beech carbon allocation. Thus, the derived equations are useful for biomass estimates of coarse roots involving trees of different ages in mixed stands of spruce and beech in the Solling Mountains. However, application of these relationships to stands in other regions would need further testing.  相似文献   

9.

Background and aims

Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors.

Results

Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24?±?6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12?±?4 %; p?Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.  相似文献   

10.
We compared the properties of the clay mineral fraction and the composition of soil solutions in a Fagus sylvatica coppice (native forest) and four adjacent plantations of Pseudotsuga menziesii, Pinus nigra, Picea abies and Quercus sessiliflora planted in 1976. The results revealed changes of clay fraction properties due to tree species effect. Clay samples from Douglas fir and pine stands differ when compared to other species. Twenty-eight years after planting, we observed the following changes: a more pronounced swelling after citrate extraction and ethylene glycol solvation, a higher CEC and a smaller poorly crystallised aluminium content. All these changes affecting the clay fraction agreed well with soil solution analyses which revealed high NO3 ?, H+ and Al concentrations under Douglas fir and pine. These changes were explained by a strong net nitrification under Douglas fir and pine stands when compared with other tree species. The higher NO3 ? concentrations in soil solutions should be linked to the presence, type and activity of ammonia-oxiding bacteria which are likely influenced by tree species. The production of NO3 ? in excess of biological demand leads to a net production of hydrogen ion and enhances the dissolution of poorly crystallised Al-minerals. Secondary Al-bearing minerals constituted the principal acid-consuming system in these soils. As a consequence, the depletion of interlayer spaces of hydroxyinterlayered minerals increases the number of sites for exchangeable cation fixation and increases CEC of the clay fraction. The dissolution of Al oxy-hydroxides explain the increase in Al concentrations of soil solutions under Douglas fir and pine stands when compared to other species. Nitrate and dissolved aluminium were conjointly leached in the soil solutions. A change in environmental conditions, like an introduction of tree species, enough modifies soil processes to induce significant changes in the soil mineralogical composition even over a period of time as short as some tens of years. Generally, mineral weathering has been considered to be very slow and unlikely to change over tens of years, resulting in few studies capable of detecting changes in mineralogy. This study appears to have detected changes in clay mineralogy during a period of 28 years after the planting of forest species. Our study represents a single location with a limited block design, but causes us to conclude that the observed changes could be widely representative. Where available, archived samples should be utilized and long-term experiments set up so that similar changes can be tested for and detected using more robust designs. The plausible hypothesis we present to explain apparent changes in clay mineralogy has strong relevance to the sustainable management of land.  相似文献   

11.
We have measured the uptake capacity of nitrogen (N) and potassium (K) from different soil depths by injecting 15N and caesium (Cs; as an analogue to K) at 5 and 50 cm soil depth and analysing the recovery of these markers in foliage and buds. The study was performed in monocultures of 40-year-old pedunculate oak (Quercus robur), European beech (Fagus sylvatica) and Norway spruce (Picea abies (L.) Karst.) located at an experimental site in Palsgård, Denmark. The markers were injected as a solution through plastic tubes around 20 trees of each species at either 5 or 50 cm soil depth in June 2003. After 65 days foliage and buds were harvested and the concentrations of 15N and Cs analysed. The recovery of 15N in the foliage and buds tended to be higher from 5 than 50 cm soil depth in oak whereas they where similar in spruce and beech after compensation for differences in immobilization of 15N in the soil. In oak more Cs was recovered from 5 than from 50 cm soil depth whereas in beech and spruce no difference could be detected. Out of the three investigated tree species, oak was found to have the lowest capacity to take up Cs at 50 cm soil depth compared to 5 cm soil depth also after compensating for differences in discrimination against Cs by the roots. The uptake capacity from 50 cm soil depth compared with 5 cm was higher than expected from the root distribution except for K in oak, which can probably be explained by a considerable overlap of the uptake zones around the roots and mycorrhizal hyphae in the topsoil. The study also shows that fine roots at different soil depths with different physiological properties can influence the nutrient uptake of trees. Estimates of fine root distribution alone may thus not reflect the nutrient uptake capacity of trees with sufficient accuracy. Our study shows that deep-rooted trees such as oak may have lower nutrient uptake capacity at deeper soil layers than more shallow-rooted trees such as spruce, as we found no evidence that deep-rooted trees obtained proportionally more nutrients from deeper soil layers. This has implications for models of nutrient cycling in forest ecosystems that use the distribution of roots as the sole criterion for predicting uptake of nutrients from different soil depths.  相似文献   

12.
Carbon loss and nitrogen dynamics in beech roots (Fagus sylvatica L.), beech twigs and ash roots (Fraxinus excelsior L.) of 0–3, 3–10 and 10–40 mm diameter were investigated during 36 months of exposure in litter bags of 1 and 4 mm mesh. Four experiments were set up: (1) Beech and ash roots (three size classes) were placed in a soil depth of ca 5 cm in a beechwood on limestone; (2) beech twigs (three size classes) were placed on the soil surface of the beechwood; (3) beech roots (3–10 mm) were placed on the soil surface of the beechwood: (4) beech twigs (3–10 mm) were placed on the soil surface of four sites representing different stages of secondary succession (wheat field, 13 year old fallow, ca 50 year old fallow, beechwood). Ash roots generally lost more C than beech roots. Loss in C of ash roots was similar for each of the size classes, whereas in beech roots and beech twigs C loss was in the order large roots > medium roots > small roots. Beech roots (3–10 mm) placed on the soil surface lost considerably less C than beech twigs (3–10 mm). Decomposition of beech twigs varied among ecosystems but generally did not follow clear patterns with successional stages. The fit of linear vs exponential models of decay is compared and in most materials exponential models fitted the data better. In each of the wood materials an accumulation of N occurred. Irrespective of wood type, root and twig diameter, mineralization of N of wood materials placed in the beechwood started uniformly after 12 months. Multiple regression analysis indicated a negative relationship between initial N content and C loss in beech roots and twigs but not in ash roots. The analysis also indicated a significant influence of the degree of white rot and of the amount of mineral soil deposited in the litter bags on C loss of certain wood materials. Generally, mesh size affected C loss and N dynamics only slightly, which is attributed to the comparatively short exposure time.  相似文献   

13.
Abstract We studied the influence of tree species on soil carbon and nitrogen (N) dynamics in a common garden of replicated monocultures of fourteen angiosperm and gymnosperm, broadleaf and needleleaf species in southwestern Poland. We hypothesized that species would influence soil organic matter (SOM) decomposition primarily via effects on biogeochemical recalcitrance, with species having tissues with high lignin concentrations retarding rates of decomposition in the O and A horizons. Additionally, because prior work demonstrated substantial divergence in foliar and soil base cation concentrations and soil pH among species, we hypothesized that species would influence chemical stabilization of SOM via cation bridging to mineral surfaces in the A-horizon. Our hypotheses were only partially supported: SOM decomposition and microbial biomass were unrelated to plant tissue lignin concentrations, but in the mineral horizon, were significantly negatively related to the percentage of the cation exchange complex (CEC) occupied by polyvalent acidic (hydrolyzing) cations (Al and Fe), likely because these cations stabilize SOM via cation bridging and flocculation and/or because of inhibitory effects of Al or low pH on decomposers. Percent CEC occupied by exchangeable Al and Fe was in turn related to both soil clay content (a parent material characteristic) and root Ca concentrations (a species characteristic). In contrast, species influenced soil N dynamics largely via variation in tissue N concentration. In both laboratory and in situ assays, species having high-N roots exhibited faster rates of net N mineralization and nitrification. Nitrification:mineralization ratios were greater, though, under species with high exchangeable soil Ca2+. Our results indicate that tree species contribute to variation in SOM dynamics, even in the mineral soil horizons. To our knowledge the influence of tree species on SOM decomposition via cation biogeochemistry has not been demonstrated previously, but could be important in other poorly buffered systems dominated by tree species that differ in cation nutrition or that are influenced by acidic deposition.  相似文献   

14.

Background and aims

Root decomposition studies have rarely considered the heterogeneity within a fine-root system. Here, we investigated fine root (< 0.5 and 0.5–2 mm in diameter) decomposition and accompanying nutrient dynamics of two temperate tree species—Betula costata Trautv and Pinus koraiensis Sieb. et Zucc.

Methods

Both litterbag and intact-core techniques were used to examine decomposition dynamic and nutrient release of the two size class roots over a 498-day period. Moreover, we examined differences between the two approaches.

Results

The very fine roots (< 0.5 mm) with an initially lower C:N ratio, decomposed more slowly than 0.5–2 mm roots of both tree species. The differences in mass loss between size classes were smaller when using the intact-core technique compared with litterbag technique. In contrast to root biomass loss, net N release was much higher in the fine roots (< 0.5 mm). All fine roots initially released N (0–75 days), but immobilized N to varying extent in the following days (75–498 days) during decomposition.

Conclusions

Our results suggest that the slow decomposition rate of very fine roots (< 0.5 mm) may be determined by their high concentration of acid-unhydrolyzable structural components. Additionally, the heterogeneity within a bulk fine-root system could lead to differences in their contribution to soil in terms of carbon and nitrogen dynamics.  相似文献   

15.
Aims Carbon (C) and nitrogen (N) stoichiometry contributes to understanding elemental compositions and coupled biogeochemical cycles in ecosystems. However, we know little about the temporal patterns of C:N stoichiometry during forest development. The goal of this study is to explore the temporal patterns of intraspecific and ecosystem components' variations in C:N stoichiometry and the scaling relationships between C and N at different successional stages.Methods Along forest development in a natural temperate forest, northeastern China, four age gradients were categorized into ca. 10-, 30-, 70- and 200-year old, respectively, and three 20 m × 20 m plots were set up for each age class. Leaves, branches, fine roots and fresh litter of seven dominant species as well as mineral soil at depth of 0–10 cm were sampled. A Universal CHN Elemental Analyzer was used to determine the C and N concentrations in all samples.Important findings Intraspecific leaf C, N and C:N ratios remained stable along forest development regardless of tree species; while C, N concentrations and C:N ratios changed significantly either in branches or in fine roots, and they varied with tree species except Populus davidiana (P < 0.05). For ecosystem components, we discovered that leaf C:N ratios remained stable when stand age was below ca. 70 years and dominant tree species were light-demanding pioneers such as Betula platyphylla and Populus davidiana, while increased significantly at the age of ca. 200 years with Pinus koraiensis as the dominant species. C:N ratios in branches and fresh litter did not changed significantly along forest development stages. C concentrations scaled isometrically with respect to N concentrations in mineral soil but not in other ecosystem components. Our results indicate that, leaf has a higher intraspecific C:N stoichiometric stability compared to branch and fine root, whereas for ecosystem components, shifts in species composition mainly affect C:N ratios in leaves rather than other components. This study also demonstrated that C and N remain coupled in mineral soils but not in plant organs or fresh litter during forest development.  相似文献   

16.
Very fine roots (<0.5 mm in diameter) of forest trees may serve as better indicators of root function than the traditional category of <2 mm, but how these roots will exhibit the plasticity of species-specific traits in response to heterogeneous soil nutrients is unknown. Here, we examined the vertical distribution of biomass and morphological and physiological traits of fine roots across three narrow diameter classes (<0.5, 0.5–1.0, and 1.0–2.0 mm) of Quercus serrata and Ilex pedunculosa at five soil depths down to 50 cm in a broad-leaved temperate forest. In both species, biomass and the allocation of very fine roots were higher in the surface soil but lower below 10-cm soil depth compared to values for larger roots (0.5–2.0 mm). When we applied these diameter classes, only very fine roots of Q. serrata exhibited significant changes in specific root length (SRL; m g−1) and root nitrogen (N) concentrations with soil depth, whereas the N concentrations only changed significantly in I. pedunculosa. The SRL and root N concentrations of larger roots in the two species did not significantly differ among soil depths. Thus, very fine roots may exhibit species-specific traits and change their potential for nutrient and water uptake in response to soil depth by plasticity in root biomass, the length, and the N in response to available resources.  相似文献   

17.
To gain insight into fine roots decomposition in subtropical China, the litter bag method was used to examine the decomposition dynamics of dry mass, N, P, K, and organic fractions in six natural forests and a Chinese fir plantation over a 2-year period in the Wanmulin Nature Reserve, Fujian. The seven tree species examined, representative of this area, differed significantly in their initial chemical quality and were used to determine the best substrate quality parameters to predict decomposition dynamics. Dry mass loss varied significantly among the different roots, which showed fast decomposition in the first year, with mass loss regulated by extractive and acid-soluble fraction, followed by a low rate in the second year, with mass loss dominated by acid-insoluble fraction. Net N release was constantly slower than the mass loss of acid-insoluble fractions, while K release was the other way around. Release of P seemed to be independent of disappearance of acid-insoluble fraction. Not all the very fine roots (0–1 mm) decomposed faster than the fine ones (1–2 mm), and decomposition rates of coniferous roots were not always lower than broadleaved species. Correlation analysis demonstrated that dry mass loss and net N and P release rates were not correlated with initial N concentration, but with acid-insoluble organic fraction and P related parameters at the end of a 2-year decomposition period. Our results suggest that N is a limiting factor of fine root decomposition. Additionally, P could also be an important driver of fine root decomposition and N and P dynamics in this low soil P availability area.  相似文献   

18.
Overexploitation of forests to increase wood production has led to the replacement of native forest by large areas of monospecific tree plantations. In the present study, the effects of different monospecific tree cover plantations on density and composition of the indigenous soil microbial community are described. The experimental site of “Breuil-Chenue” in the Morvan (France) was the site of a comparison of a similar mineral soil under Norway spruce (Picea abies), Douglas fir (Pseudotuga menziesii), oak (Quercus sessiflora), and native forest [mixed stand dominated by oak and beech (Fagus sylvatica)]. Sampling was performed during winter (February) at three depths (0–5, 5–10, and 10–15 cm). Abundance of microorganisms was estimated via microbial biomass measurements, using the fumigation–extraction method. The genetic structure of microbial communities was investigated using the bacterial- and fungal-automated ribosomal intergenic spacer analysis (B-ARISA and F-ARISA, respectively) DNA fingerprint. Only small differences in microbial biomass were observed between tree species, the highest values being recorded under oak forest and the lowest under Douglas fir. B- and F-ARISA community profiles of the different tree covers clustered separately, but noticeable similarities were observed for soils under Douglas fir and oak. A significant stratification was revealed under each tree species by a decrease in microbial biomass with increasing depths and by distinct microbial communities for each soil layer. Differences in density and community composition according to tree species and depth were related to soil physicochemical characteristics and organic matter composition.  相似文献   

19.
Schmid I  Kazda M 《Oecologia》2005,144(1):25-31
Distribution of small roots (diameter between 2 mm and 5 mm) was studied in 19 pits with a total of 72 m2 trench profile walls in pure stands of Fagus sylvatica and Picea abies. Root positions within the walls were marked and transformed into x-coordinates and y-coordinates. In a GIS-based evaluation, zones of potential influence around each root were calculated. The total potential influence produced isoline maps of relative root influence zones, thus indicating small root clustering. The questions studied were (1) whether there were marked clusters of small roots in the soil and (2) whether trees surrounding the pit (defined as tree density) correlate with the root abundance and distribution on the trench profile walls. Small roots of both species showed maximum abundance in the top 20 cm of the soil, where pronounced root clusters occurred next to areas with only low root accumulation. The area of root clusters did not differ significantly between the two stands. Weighted clumping, WC, calculated as a product of root class, and its area was used as an index of root clustering, which again did not differ between beech and spruce stands. However, evaluations on a single root level showed that beech achieved the same degree of clustering with lower number of roots. Regardless of soil properties related to root clusters, a significantly higher clustering acquired per root for beech than for spruce suggests beech to be more efficient in belowground acquisition of space. Because none of the parameters describing root clustering were correlated with tree density around the investigated soil profiles, clusters of small roots are inherently present within the tree stands.  相似文献   

20.
季节性冻融期间亚高山森林凋落物的质量变化   总被引:2,自引:1,他引:1  
凋落物质量是影响凋落物分解的重要生物因子,其在季节性冻融期间的变化可能对亚高山森林生态系统过程产生显著的影响。因此,采用凋落物分解袋法,研究了岷江冷杉(Abies faxoniana)和白桦(Betula platyphylla)凋落物质量在一个季节性冻融期间(2006年10月至2007年4月)的变化。季节性冻融期间,岷江冷杉和白桦凋落物的木质素(L)和纤维素的降解率为全年降解的70%-75%,岷江冷杉和白桦凋落物的C/N、L/N和纤维素/N均显著增加,而纤维素/P均有所降低。岷江冷杉凋落物的C/P和L/P有所增加,但白桦凋落物的C/P和L/P有所降低。可见,季节性冻融期间,亚高山森林凋落物的质量发生了较为显著的变化,其显著影响了亚高山凋落物分解过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号