首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
运用网袋法,在福建建瓯万木林自然保护区米槠天然林内,将米槠根系按直径大小分成0~1、1~2和2~4 mm 3个级别进行分解研究.结果表明:在为期2年(720 d)的分解试验过程中,网袋内所有米槠根系的分解速率均呈现前期较快、后期较慢的变化特征,主要是可萃取物的淋溶损失使根系的前期分解较快,而酸不溶性物质浓度的上升抑制了其后期分解.根系分解1年(360 d)后,不同径级根系的分解速率由其初始可萃取物和N浓度控制;而分解2年(720 d)后,其根系底物中初始C/N、初始酸不溶物质与N、P浓度共同决定分解速率.在分解过程中,米槠3个径级根系都表现为N浓度不断上升、P浓度不断下降的趋势,其中N的释放呈现富集-释放格局,而P则为直接释放.  相似文献   

2.

Background and aims

Root decomposition studies have rarely considered the heterogeneity within a fine-root system. Here, we investigated fine root (< 0.5 and 0.5–2 mm in diameter) decomposition and accompanying nutrient dynamics of two temperate tree species—Betula costata Trautv and Pinus koraiensis Sieb. et Zucc.

Methods

Both litterbag and intact-core techniques were used to examine decomposition dynamic and nutrient release of the two size class roots over a 498-day period. Moreover, we examined differences between the two approaches.

Results

The very fine roots (< 0.5 mm) with an initially lower C:N ratio, decomposed more slowly than 0.5–2 mm roots of both tree species. The differences in mass loss between size classes were smaller when using the intact-core technique compared with litterbag technique. In contrast to root biomass loss, net N release was much higher in the fine roots (< 0.5 mm). All fine roots initially released N (0–75 days), but immobilized N to varying extent in the following days (75–498 days) during decomposition.

Conclusions

Our results suggest that the slow decomposition rate of very fine roots (< 0.5 mm) may be determined by their high concentration of acid-unhydrolyzable structural components. Additionally, the heterogeneity within a bulk fine-root system could lead to differences in their contribution to soil in terms of carbon and nitrogen dynamics.  相似文献   

3.
在三峡库区秭归县九岭头林场马尾松人工林进行一年的细根分解试验,研究马尾松直径<0.5、0.5~1和1~2 mm细根的分解动态及其影响因素.结果表明: 细根分解速率随直径增大而减小,直径<0.5、0.5~1和1~2 mm细根年分解率分别为34.0%、28.0% 和25.7%.直径<1 mm细根分解速率随时间增加而逐渐减小,直径1~2 mm细根分解速率随时间增加先逐渐增加再减小.在细根分解过程中,N、P和Ca浓度随时间增加而增加,K浓度呈先降低后上升再下降的趋势.细根分解速率与细根初始N、P、K和Ca浓度,以及C/N、C/P均显著相关,细根Ca浓度和土壤温度是影响细根分解的主导因子.  相似文献   

4.
在福建省建瓯万木林自然保护区,选取针叶树种杉木(Cunninghamia lanceolata,CUL)细根和常绿阔叶树种米槠(Castanopsis carlesii,CAC)细根,采用网袋法进行了为期720d细根(分0-1mm、1-2mm两个径级)单独分解(在各自细根的起源林分)和混合分解(分别在杉木林和米槠林)干重损失及其养分释放动态的研究。结果表明:杉木和米槠细根混合分解前期(0-270d)曾对干重损失起促进作用,而之后(270-720d),细根混合起了抑制作用。分解过程中的养分释放与干重损失有所不同,混合分解前期(0-360d)出现过促进作用,分解后期(360-720d),除1-2mm径级混合细根P的释放既没有促进也没有抑制作用外,均表现为养分释放的抑制作用。细根混合分解过程中干重损失和养分释放速率变化与分解者生物群落有很大关系。  相似文献   

5.
Lõhmus  Krista  Ivask  Mari 《Plant and Soil》1995,168(1):89-94
Long-term decomposition and nitrogen dynamics of Norway spruce finest (<1 mm in diameter) and fine (<2 mm in diameter) roots were estimated using the root litter-bag techniques. The seasonal decomposition of the finest roots was investigated in a 40-year-old high site quality stand grown on brown lessive soil at different depths as part of productivity studies. The fine root decomposition studies were conducted on 8 permanent plots in the Estonia with the aim to describe the site variation. The initial material was collected from one of stands (high quality site) and incubated at the depth of 10 cm in 1989 (at one site 1990). The bags were collected once or twice a year except for one site, where the seasonal dynamics was investigated. In all initial and decomposing root samples oven-dry weight, ash and energy content and nitrogen concentration was determined. After five years the finest roots had lost 40% of their initial dry weight, half of it during the first year. The initial concentration of nitrogen was 1.29%, the mean concentrations varied during the incubation from 1.47 to 1.78%. After the first year fine roots had lost 21.0 to 32.7% of their initial dry weight, after two years the weight loss was 22.5 to 43.2%. The initial N concentration in fine roots was 0.73% and in the first years it varied from 0.97 to 1.40% at different sites.  相似文献   

6.
在天全县的退耕还林地中,对三倍体毛白杨细根与黑麦草草根的分解及其N、P、K、Ca和Mg养分动态进行了研究.结果表明,细根直径0~1、1~2和0~2 mm及草根的分解速率与时间呈负指数关系,第1年干重损失率分别为76.17%、69.80%、73.44%和79.3%,分解0%所需的时间分别为217、266、24和172 d.细根分解过程中,N和Ca浓度增加,而P、K、Mg浓度下降;草根分解过程中,其养分元素的浓度变化整体上没有规律.细根分解过程中P、K和Mg的养分残留率与其干重残留率的变化趋势相似,分解前期下降较快,随后下降比较平缓,N和Ca的养分残留率下降则比较平缓,并且养分的分解速率均以P最快,其次是K和Mg,而N和Ca最慢;草根分解过程中N、P、K、Ca和Mg的养分残留率初期下降比较快,随后趋于平缓,并且元素分解速率呈不规则变化,其中Ca分解速率最慢,其它元素的分解速率相近.  相似文献   

7.
Foliar litter decomposition of nine species in broadleaf-mixed Korean pine plantation forests, northeast China was assessed over a 34-month field experiment using litterbag method. Litter mass loss generally followed a sequential decomposition of water-soluble fraction (WSF), acid-soluble fraction (ASF), and acid-insoluble fraction (AIF). WSF decomposition contributed most of litter mass loss in the first 6 months, while ASF accounted for most of litter mass loss thereafter. There existed significant autocorrelations among the initial litter quality indices. Initial N, K, Ca, AIF, AIF/N, ASF/N, and WSF/N were significantly related to the percent remaining of litter mass, N, P, Ca, and Mg in both month 12 and month 34. No litter quality can significantly predict the percent remaining of AIF and K. N and P were immobilized by all litters, but Ca, Mg, and K exhibited minor or no immobilization phase. N was the most limiting element in this forest based on the results of correlation analysis and nutrient elements release dynamics. The relationships between WSF, ASF, and AIF loss and N or P release rate fitted the polynomial regression. The decomposition of WSF and ASF were faster than N and P were mineralized during the study. AIF loss rate relative to N and P loss varied greatly among species, with high-N litter showing slower AIF decomposition rates than N and P. The loss rates of WSF and ASF were in proportion to that of K, Ca, and Mg, while AIF decomposed slower than K, Ca, and Mg. This suggested that the decomposition of WSF and ASF caused the net release of K, Ca, and Mg. Responsible Editor: David E. Crowley.  相似文献   

8.
Atmospheric nitrogen deposition increases forest carbon sequestration across broad parts of the Northern Hemisphere. Slower organic matter decomposition and greater soil carbon accumulation could contribute to this increase in carbon sequestration. We investigated the effects of chronic simulated nitrogen deposition on leaf litter and fine root decomposition at four sugar maple (Acer saccharum)-dominated northern hardwood forests. At these sites, we previously observed that nitrogen additions increased soil organic carbon and altered litter chemistry. We conducted a 3-year decomposition study with litter bags. Litter production of leaves and fine roots were combined with decomposition dynamics to estimate how fine roots and leaf litter contribute to soil organic carbon. We found that nitrogen additions marginally stimulated early-stage decomposition of leaf litter, an effect associated with previously documented changes in litter chemistry. In contrast, nitrogen additions inhibited the later stages of fine root decomposition, which is consistent with observed decreases in lignin-degrading enzyme activities with nitrogen additions at these sites. At the ecosystem scale, slower fine root decomposition led to additional root mass retention (g m?2), and this greater retention of root residues was estimated to explain 5–51% of previously documented carbon accumulation in the surface soil due to nitrogen additions. Our results demonstrated that simulated nitrogen deposition created contrasting effects on the decomposition of leaf litter and fine roots. Although previous nitrogen deposition studies have focused on leaf litter, this work suggests that slower fine root decomposition is a major driver of soil organic carbon accumulation under elevated nitrogen deposition.  相似文献   

9.
谷利茶  王国梁  景航  姚旭 《生态学杂志》2017,28(9):2771-2777
采用4个梯度的林地氮处理(N0、N3、N6和 N9依次为0、3、6 和9 g N·m-2·a-1),利用分解袋试验,研究了N添加对油松不同径级细根分解及养分释放过程的影响.结果表明: 细根分解过程分为快速分解(0~60 d)和慢速分解(60~300 d)两个阶段.0~0.4、0.4~1和1~2 mm细根分解的质量百分数在第60天分别为7.6%、10.4%和11.4%,在第300天分别为19.8%、23.5%和30.5%,说明较细的根系分解较慢.N添加显著降低了0~0.4 mm细根的分解速率,但对0.4~1和1~2 mm细根分解速率无显著影响,与对照(N0)相比,N3、N6和N9处理试验期间分解速率分别降低2.1%、4.5%和5.8%.N添加显著增加了0~0.4和0.4~1 mm细根C和N残留率,但对1~2 mm细根C和N残留率无显著影响,且对3个径级细根P残留率无显著影响.与对照相比,N3、N6和N9处理分别增加了0~0.4 mm细根中8.1%、9.4%和4.5%的C残留率和5.3%、16.3%和16.7%的N残留率;同时增加了0.4~1 mm细根中2.5%、2.5%和0.9%的C残留率和0.9%、2.3%和3.9%的N残留率.0~0.4、0.4~1 mm细根C、N、P迁移模式总体表现为直接释放,而1~2 mm细根N为富集-释放模式.氮沉降可能主要通过影响0~0.4 mm细根(主要为1和2级细根)的分解过程,从而降低细根的分解速率.  相似文献   

10.
采用埋袋法对川西亚高山3个优势树种(岷江冷杉、粗枝云杉和红桦)细根(≤2 mm)、中根(2~5 mm)和粗根(≥5 mm)质量损失率及碳(C)、氮(N)、磷(P)在经历生长季和非生长季之后释放特征进行研究.结果表明: 红桦质量残留率低于岷江冷杉和粗枝云杉.同一树种,质量残留率总体上随根系径级增加而增加.非生长季的质量损失率占全年质量损失率的52.1%~64.4%.红桦C释放率最高,岷江冷杉最低,且随根系直径的增粗,C释放率降低.岷江冷杉和粗枝云杉N释放模式为非生长季富集、生长季释放,而红桦反之.富集期间,径级越大,富集量越多.3个树种各径级根系P动态在非生长季和生长季皆表现为富集-释放模式,且岷江冷杉P富集程度显著高于粗枝云杉和红桦,但各径级之间差异总体不显著.根系径级对川西亚高山森林根系分解具有显著影响,而径级影响与树种和分解时期有一定关系.  相似文献   

11.

Background and aims

Roots of the lowest branch orders have the highest mortality rate, and may contribute predominately to plant carbon (C) and nutrient transfer into the soil. Yet patterns and controlling factors of the decomposition of these roots are poorly understood.

Methods

We conducted a two-year field litterbag study on different root orders and leaf litter in four temperate and four subtropical tree species.

Results

Five species showed slower decay rates in lower- (order 1–2) than higher-order (order 3–5) roots, and all species showed slower decay rates in lower-order roots than leaf litter. These patterns were strongly related to higher acid-insoluble fraction in lower- than higher-order roots, and in roots than in leaf litter, but were unrelated to initial N concentration. Litter N was predominantly in recalcitrant forms and limited amount of N was released during the study period;only 12 % of root N and 26 % of leaf litter N was released in 2 years.

Conclusions

We conclude that the slow decomposition of lower-order roots may be a common phenomenon and is mainly driven by their high acid-insoluble fraction. Moreover, litter N, especially root N, is retained during decomposition and may not be available for immediate plant uptake.  相似文献   

12.

Background and aims

Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors.

Results

Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24?±?6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12?±?4 %; p?Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.  相似文献   

13.
Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.  相似文献   

14.
Root decomposition is a critical feedback from the plant to the soil, especially in sandy land where strong winds remove aboveground litter. As a pioneer shrub in semi-mobile dunes of the Horqin sandy land, Artemisia halodendron has multiple effects on nutrient capture and the microenvironment. However, its root decomposition has not been studied in terms of its influence on soil organic carbon (SOC) and nitrogen (N). In this study, we buried fine (≤2 mm) and coarse roots in litterbags at a depth of 15 cm below semi-mobile dunes. We measured the masses remaining and the C and N contents at intervals during 434 days of decomposition. The soils below the litterbags were then divided into layers and sampled to measure the SOC and N contents. After rapid initial decomposition, both coarse and fine roots decomposed slowly. After 53 days, 36.2 % of coarse roots and 39.8 % of fine roots had decomposed. In contrast, only 18.4 % of coarse roots and 30.5 % of fine roots decomposed in the following 381 days. Fine roots decomposed significantly faster, and their decomposition rate after the initial rapid decay was strongly related to climate (R 2 = 0.716, P < 0.05). Root decomposition increased SOC and N contents below the litterbags, with larger effects for fine roots. The SOC content was more variable between soil layers than the N content. Thus, decomposition of A. halodendron roots cannot be ignored when studying SOC and N feedbacks from plants to the soil, particularly for fine roots.  相似文献   

15.
Rong Mao  De-Hui Zeng  Lu-Jun Li 《Plant and Soil》2011,347(1-2):115-123
Fresh tree root decomposition induced by tillage is an important source of soil nutrients in agroforestry systems. Here we examined the effects of tree species, root size and soil N enrichment on fresh root decomposition under laboratory conditions. Fresh roots with two diameters (<2 and 2?C5 mm) of Populus euramericana cv. ??N3016?? (poplar) and Pinus tabulaeformis (pine) collected from agroforestry systems in Northeast China were used in the experiment. For each root treatment, four N levels (0, 50, 100 and 150 ??g N g?1 soil) were added. We recognized N concentration and C/N ratio as the root quality variables, and determined decomposition rates as cumulative CO2 production and mass loss. Poplar roots had higher N concentration and lower C/N ratio and decomposed faster than pine roots, and smaller roots decomposed faster than the corresponding larger roots. The effect of N addition on root decomposition varied from positive to negligible to negative, and depended on root quality and N addition rates. Increased N availability did not accelerate and even suppressed poplar root decomposition, whereas generally stimulated pine root decomposition. Our results suggest that root quality should be incorporated into the design of agroforestry systems. Moreover, the differential responses of N addition on decomposition of fresh roots with different quality provide insights into soil nutrient management in agroforestry practices.  相似文献   

16.
Decomposition of fine roots is a fundamental ecosystem process that relates to carbon (C) and nutrient cycling in terrestrial ecosystems. However, this important ecosystem process has been hardly studied in Patagonian ecosystems. The aim of this work was to study root decomposition and nutrient release from fine roots of grasses and trees (Nothofagus antarctica) across a range of Patagonian ecosystems that included steppe, primary forest and silvopastoral forests. After 2.2 years of decomposition in the field all roots retained 70–90% of their original mass, and decomposition rates were 0.09 and 0.15 year?1 for grass roots in steppe and primary forest, respectively. For N. antarctica roots, no significant differences were found in rates of decay between primary and silvopastoral forests (k = 0.07 year?1). Possibly low temperatures of these southern sites restricted decomposition by microorganisms. Nutrient release differed between sites and root types. Across all ecosystem categories, nitrogen (N) retention in decomposing biomass followed the order: tree roots > roots of forest grasses > roots of steppe grasses. Phosphorus (P) was retained in grass roots in forest plots but was released during decomposition of tree and steppe grass roots. Calcium (Ca) dynamics also was different between root types, since trees showed retention during the initial phase, whereas grass roots showed a slow and consistent Ca release during decomposition. Potassium (K) was the only nutrient that was rapidly released from both grass and tree roots in both grasslands and woodlands. We found that silvopastoral use of N. antarctica forests does not affect grass or tree root decomposition and/or nutrient release, since no significant differences were found for any nutrient according to ecosystem type. Information about tree and grass root decomposition found in this work could be useful to understand C and nutrient cycling in these southern ecosystems, which are characterized by extreme climatic conditions.  相似文献   

17.
Elevated CO2 can increase fine root biomass but responses of fine roots to exposure to increased CO2 over many years are infrequently reported. We investigated the effect of elevated CO2 on root biomass and N and P pools of a scrub-oak ecosystem on Merritt Island in Florida, USA, after 7 years of CO2 treatment. Roots were removed from 1-m deep soil cores in 10-cm increments, sorted into different categories (<0.25 mm, 0.25–1 mm, 1–2 mm, 2 mm to 1 cm, >1 cm, dead roots, and organic matter), weighed, and analyzed for N, P and C concentrations. With the exception of surface roots <0.25 mm diameter, there was no effect of elevated CO2 on root biomass. There was little effect on C, N, or P concentration or content with the exception of dead roots, and <0.25 mm and 1–2 mm diameter live roots at the surface. Thus, fine root mass and element content appear to be relatively insensitive to elevated CO2. In the top 10 cm of soil, biomass of roots with a diameter of <0.25 mm was depressed by elevated CO2. Elevated CO2 tended to decrease the mass and N content of dead roots compared to ambient CO2. A decreased N concentration of roots <0.25 mm and 1–2 mm in diameter under elevated CO2 may indicate reduced N supply in the elevated CO2 treatment. Our study indicated that elevated CO2 does not increase fine root biomass or the pool of C in fine roots. In fact, elevated CO2 tends to reduce biomass and C content of the most responsive root fraction (<0.25 mm roots), a finding that may have more general implications for understanding C input into the soil at higher atmospheric CO2 concentrations.  相似文献   

18.
Fine root (<2 mm) decomposition provides a substantial amount of available nitrogen (N) that sustains plant growth. The N release pattern during litter decomposition is generally controlled by initial N concentrations or C/N. Because root branch order and mycorrhizal colonization (related with branch order) are both highly related with different initial chemistry, a hypothesis was proposed that N dynamics during root decomposition varied among different branch orders. Using the litterbag method, decomposition of the first six order roots for Fraxinus mandshurica (an arbuscular mycorrhizal species) and Larix gmelinii (an ectomycorrhizal species) was studied in Northeast China during a 513-day period. Results showed a similar pattern for the two species with contrasting mycorrhizal type: lower-order roots (the lateral root tips), which had an initial C/N of 17–21, continuously released N without any immobilization and maintained a consistently low C/N (<20), whereas higher-order roots, which had an initial C/N of 28–48, periodically immobilized N, leading to a declining C/N over time. In addition, the magnitude of N dynamics is different between species for lower-order roots, but no different for higher-order roots. These results suggest that fine root N dynamics are heterogeneous among branch orders and that species-specific differences depend on the behavior of lower-order roots.  相似文献   

19.
While plant litters are the main source of soil organic matter (SOM) in forests, the controllers and pathways to stable SOM formation remain unclear. Here, we address how litter type (13C/15N‐labeled needles vs. fine roots) and placement‐depth (O vs. A horizon) affect in situ C and N dynamics in a temperate forest soil after 5 years. Litter type rather than placement‐depth controlled soil C and N retention after 5 years in situ, with belowground fine root inputs greatly enhancing soil C (x1.4) and N (x1.2) retention compared with aboveground needles. While the proportions of added needle and fine root‐derived C and N recovered into stable SOM fractions were similar, they followed different transformation pathways into stable SOM fractions: fine root transfer was slower than for needles, but proportionally more of the remaining needle‐derived C and N was transferred into stable SOM fractions. The stoichiometry of litter‐derived C vs. N within individual SOM fractions revealed the presence at least two pools of different turnover times (per SOM fraction) and emphasized the role of N‐rich compounds for long‐term persistence. Finally, a regression approach suggested that models may underestimate soil C retention from litter with fast decomposition rates.  相似文献   

20.
叶和细根(2mm)是森林生态系统的分解主体,二者是否协同分解,将极大影响所属植物在生态系统碳(C)循环中的物种效应。已有研究显示,叶和细根的分解关系具有极大的不确定性,认为很大程度上归因于细根内部具有高度的异质性,导致叶和细根在功能上不相似。为此,使用末梢1级根和细根根枝作为研究对象,它们在功能上同叶类似,称为吸收根。通过分解包法,分别在黑龙江帽儿山和广东鹤山,研究了2个阔叶树种和2个针叶树种(共8个树种)的叶和吸收根持续2a多的分解。结果发现,分解速率k(a~(-1),负指数模型)在8个树种整体分析时具有正相关关系(P0.05),在相同气候带或植物生活型水平上是否相关,受叶的分解环境及吸收根类型的影响;N剩余量整体上并不相关,亚热带树种的叶和细根根枝的N剩余量在分解1a后高度显著正相关,温带树种的叶和1级根的N剩余量在分解2a后显著高度正相关。本研究中,根-叶分解过程是否受控于相同或相关的凋落物性质是决定根-叶分解是否相关的重要原因,其中分解速率与酸溶组分正相关、与酸不溶组分负相关。比较已有研究,总结发现,根-叶分解关系受物种影响较大,暗示气候变化导致物种组成的改变将极大影响地上-地下关系,也因此影响生态系统C循环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号