首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
2.
Induced pluripotent stem cells (iPSCs) are powerful tools for basic and translational research, as well as regenerative medicine. In routine human in vitro fertilization (IVF) practices, cumulus cells (CCs) are discarded, representing a potential source of biological materials for regenerative medicine. In this study, we derived patient-specific iPSCs using CCs from human infertility clinics for the first time. The human cumulus cell derived iPSCs (hc-iPSCs) were characterized for growth, karyotype, expression of pluripotency genes, and were subjected to embryoid bodies (EBs) and teratoma assays to evaluate their differentiation capacity. Hc-iPSCs display typical iPSC characteristics, and are capable of differentiating into all germ layers in vitro and in vivo. We further show that putative primordial germ cell like cells (PGCLCs) can be derived using hc-iPSCs. Our data demonstrate the feasibility of deriving patient-specific pluripotent stem cells using CCs.  相似文献   

3.
4.
Human induced pluripotent stem cells (iPSCs) hold great promise for regenerative med- icine. Generating iPSCs from immunologically immature newborn umbilical cord blood mononu- clear cells (UCBMCs) is of great significance. Here we report generation of human iPSCs with great efficiency from UCBMCs using a dox-inducible lentiviral system carrying four Yamanaka factors. We generated these cells by optimizing the existing iPSC induction protocol. The UCBMC-derived iPSCs (UCB-iPSCs) have characteristics that are identical to pluripotent human embryonic stem cells (hESCs). This study highlights the use of UCBMCs to generate highly functional human iPSCs that could accelerate the development of cell-based regenerative therapy for patients suffering from various diseases.  相似文献   

5.
Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specific iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.  相似文献   

6.
Induced pluripotent stem cells (iPSCs) represent a valuable alternative to stem cells in regenerative medicine overcoming their ethical limitations, like embryo disruption. Takahashi and Yamanaka in 2006 reprogrammed, for the first time, mouse fibroblasts into iPSCs through the retroviral delivery of four reprogramming factors: Oct3/4, Sox2, c-Myc, and Klf4. Since then, several studies started reporting the derivation of iPSC lines from animals other than rodents for translational and veterinary medicine. Here, we review the potential of using these cells for further intriguing applications, such as “cellular agriculture.” iPSCs, indeed, can be a source of in vitro, skeletal muscle tissue, namely “cultured meat,” a product that improves animal welfare and encourages the consumption of healthier meat along with environmental preservation. Also, we report the potential of using iPSCs, obtained from endangered species, for therapeutic treatments for captive animals and for assisted reproductive technologies as well. This review offers a unique opportunity to explore the whole spectrum of iPSC applications from regenerative translational and veterinary medicine to the production of artificial meat and the preservation of currently endangered species.  相似文献   

7.
8.
The generation of induced pluripotent stem cells (iPSCs) by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs)-derived iPSCs by gene transduction with Sendai virus (SeV) vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08-0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes.  相似文献   

9.

Background

Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, appear to have a hypermethylated status compared with differentiated cells. However, the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally, differential methylation patterns of induced pluripotent stem cells generated using diverse methods require further study.

Methodology

Here, we determined the DNA methylation profiles of 10 human cell lines, including 2 ESC lines, 4 virally derived iPSC lines, 2 episomally derived iPSC lines, and the 2 parental cell lines from which the iPSCs were derived using Illumina''s Infinium HumanMethylation450 BeadChip. The iPSCs exhibited a hypermethylation status similar to that of ESCs but with distinct differences from the parental cells. Genes with a common methylation pattern between iPSCs and ESCs were classified as critical factors for stemness, whereas differences between iPSCs and ESCs suggested that iPSCs partly retained the parental characteristics and gained de novo methylation aberrances during cellular reprogramming. No significant differences were identified between virally and episomally derived iPSCs. This study determined in detail the de novo differential methylation signatures of particular stem cell lines.

Conclusions

This study describes the DNA methylation profiles of human iPSCs generated using both viral and episomal methods, the corresponding somatic cells, and hESCs. Series of ss-DMRs and ES-iPS-DMRs were defined with high resolution. Knowledge of this type of epigenetic information could be used as a signature for stemness and self-renewal and provides a potential method for selecting optimal pluripotent stem cells for human regenerative medicine.  相似文献   

10.
The discovery of human pluripotent stem cells (PSCs) at the turn of the century opened the door to a new generation of regenerative medicine research. Among PSCs, the donors available for induced pluripotent stem cells (iPSCs) are greatest, providing a potentially universal cell source for all types of cell therapies including cancer immunotherapies using natural killer (NK cells). Unlike primary NK cells, those prepared from iPSCs can be prepared with a homogeneous quality and are easily modified to exert a desired response to tumor cells. There already exist several protocols to genetically modify and differentiate iPSCs into NK cells, and each has its own advantages with regards to immunotherapies. In this short review, we detail the benefits of using iPSCs in NK cell immunotherapies and discuss the challenges that must be overcome before this approach becomes mainstream in the clinic.  相似文献   

11.
诱导性多潜能干细胞(iPSCs)是指分化细胞中导入特定转录因子后逆转恢复到类似胚胎干细胞的具有自我更新、多向分化等潜能的一类细胞。诱导疾病特异性iPSCs是疾病机理、再生医学等领域的研究热点。目前,人iPSCs供体细胞主要来源于皮肤成纤维细胞,需要组织活检、体外增殖等繁琐过程。利用外周血细胞(peripheral blood cells)成功诱导iPSCs,具有取材方便、诱导快速等优点,将极大地促进iPSCs研究。该文在介绍iPSCs诱导方法的基础上,重点阐述了从小鼠B细胞、T细胞,人脐带血细胞,到人外周血细胞重编程为iPSCs的研究进展,分析了该技术的特点和可能存在的问题,并进行了前景展望。  相似文献   

12.
The path to induced pluripotency Discovery of a pan-species pluripotency network Animal iPSCs and disease modelling Issues with large animal iPSCs Conclusions The derivation of human embryonic stem cells and subsequently human induced pluripotent stem cells (iPSCs) has energized regenerative medicine research and enabled seemingly limitless applications. Although small animal models, such as mouse models, have played an important role in the progression of the field, typically, they are poor representations of the human disease phenotype. As an alternative, large animal models should be explored as a potentially better approach for clinical translation of cellular therapies. However, only fragmented information regarding the derivation, characterization and clinical usefulness of pluripotent large animal cells is currently available. Here, we briefly review the latest advances regarding the derivation and use of large animal iPSCs.  相似文献   

13.
Induced pluripotent stem cells (iPSCs) prepared from somatic cells might become a novel therapeutic tool in regenerative medicine, especially for the central nervous system (CNS). In this study, we attempted to induce O4-positive (O4+) oligodendrocytes from adult human fibroblast-derived iPSCs in vitro. We used two adult human iPSC cell lines, 201B7 and 253G1. 201B7 was induced by four-gene transduction (oct4, sox2, klf4, c-myc), and 253G1 was induced by three-gene transduction (oct4, sox2, klf4). We treated these cells with two in vitro oligodendrocyte-directed differentiation protocols that were optimized for human embryonic stem cells. One protocol used platelet-derived growth factor as the major mitogen for oligodendrocyte lineage cells, and the other protocol used epidermal growth factor (EGF) as the mitogen. Although the differentiation efficiency was low (less than 0.01%), we could induce O4+ oligodendrocytes from 253G1 cells using the EGF-dependent differentiation protocol. This is the first report of the in vitro induction of oligodendrocytes differentiation from human iPSCs.  相似文献   

14.
生殖健康是生命科学领域关注的核心之一,各种原因所致男性不育亟待解决,然而由于伦理限制等原因,缺少合适的具有人类遗传背景的研究模型开展研究。胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)均属于多能干细胞,具有多向分化潜能。一方面,可利用ESCs?/?iPSCs向生殖细胞分化的模型研究人类生殖细胞的发育规律,另一方面,在此基础上,可建立带有人类疾病遗传背景的iPSCs模型,体外诱导其向雄性生殖细胞分化,利用该模型研究男性不育的发病机制。由于精子在体内的形成遵循一定规律,体外环境中不同发育阶段的生殖细胞在不同诱导因子作用下才可稳定地往下一阶段定向分化,因此,诱导ESCs?/?iPSCs向雄性生殖细胞方向分化时,诱导因子的种类和加入时间的选择应根据生殖细胞的体内发育特征而定,并且在诱导的不同阶段循序加入,以此模拟精子在体内的形成过程,进而更好地研究男性不育的发病机制。本文将对多能干细胞向雄性生殖细胞定向分化的常用诱导因子及存在问题和展望进行综述,为相关研究的开展提供借鉴。  相似文献   

15.
诱导多能干细胞(Induced pluripotent stem cells,i PSCs)是利用特定的转录因子诱导体细胞获得的,像胚胎干细胞一样,可以进行无限的自我更新,并具有分化成三个胚层的能力。iPSC有可能提供无限的自体细胞治疗,目前研究已经证实,不同种类疾病的患者提供的成体细胞诱导后可产生种类繁多的iPSC,这项技术给目前无有效治疗手段的多类疾病带来了治疗的希望,并有可能避免利用胚胎干细胞(embryonic stem cells,ESCs)治疗面临的伦理问题和免疫排斥反应。本文回顾iPSC技术优化过程,着重关注应用i PSC建立细胞模型、进行细胞治疗的进展,并探讨iPSC在基础研究及临床应用中遇到的挑战。  相似文献   

16.
17.
将体细胞诱导为多功能干细胞为人类的再生医学提供了一个全新的研究手段,从而可以不用损坏胚胎就能获得可用于治疗各种特殊疾病的细胞。本文比较了近年来关于生成诱导性多能干细胞(induced pluripotent stem cells,iPS细胞)的诱导方法及重编程效率,总结了这些方法的共同点;另外通过对每个不同试验过程的影响因素进行比较,归纳了影响iPS细胞重编程过程的几个因素。  相似文献   

18.
19.
Monocytic lineage cells (monocytes, macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3×106±0.3×106 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5–6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery.  相似文献   

20.
With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of human patients with defined factors, hold promise for regenerative medicine because they can provide a renewable source of autologous cells for cell therapy without the concern for immune rejection. In addition, iPSCs provide a unique opportunity to model human diseases with complex genetic traits, and a panel of human diseases have been successfully modeled in vitro by patient-specific iPSCs. Despite these progresses, recent studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to the immunogenicity of some cells differentiated from iPSCs. The oncogenic potential of iPSCs is further underscored by the findings that the critical tumor suppressor p53, known as the guardian of the genome, suppresses induced pluripotency. Therefore, the clinic application of iPSCs will require the optimization of the reprogramming technology to minimize the genetic and epigenetic abnormalities associated with induced pluripotency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号