首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of the posterior tibial flap pedicled on the posterior tibial vessels has been described by several authors, but with it there is the major disadvantage of an unavoidable transection of the posterior tibial artery. To overcome this disadvantage, we anatomically studied the perforators from the posterior tibial artery and used posterior tibial perforator-based flaps clinically. Based on our anatomic study of 25 cadaveric legs, the cutaneous perforators were considered to be distributed from the distal to the proximal sides of the lower leg through the medial border of the tibia, and they were classified into three types: septocutaneous perforators mainly located in the distal third of the leg, muscle perforators located in the proximal half, and periosteal perforators in the proximal third of the leg. The average size and number of perforators was 0.8 mm and 3.1 in one leg, respectively. A considerable number were located at sites from 70 to 140 mm superior to the medial malleolus. Based on our clinical cases repaired with flaps, we consider this flap to be useful as a free flap for the repair of defects of the extremities and as an island flap for reconstruction of defects on the anteromedial aspect of the lower leg. The territory of the flap is relatively wide, being 19 x 13 cm. The long saphenous vein can be used safely as the venous drainage system in the case of free-flap transfer.  相似文献   

2.
A 33-year-old man suffered from locally recurrent malignant fibrous histiocytoma of his left thigh unresponsive to previous excision, radiation therapy, chemotherapy, and hyperthermic treatment. He underwent radical hemipelvectomy for cure. Because of extensive tumor involvement, a free flap consisting of his distal left leg based on the popliteal artery was utilized to close the defect. Both the tibia and fibula were removed from their periosteal sheaths, and the foot was excised from the flap. The popliteal artery and vein were anastomosed to the iliac vessels. The flap survived, and the patient was discharged home after physical rehabilitation. We suggest that uninvolved portions of the distal leg may be utilized as a free flap to successfully close hemipelvectomy defects in selected patients when conventional pedicle flaps are unavailable.  相似文献   

3.
The distally based anterolateral thigh flap has been used for coverage of soft-tissue defects of the knee and upper third of the leg. This flap is based on the septocutaneous or musculocutaneous perforators derived from the lateral circumflex femoral system. The purpose of this study was to examine the results of anatomical variations of the descending branch of the lateral circumflex femoral artery and the retrograde blood pressure of the descending branch of the lateral circumflex femoral artery so that the surgical technique for raising and transferring a distally based anterolateral thigh flap to the knee region could be improved. The authors have actually used this flap in three cases. In 11 thighs of six cadavers, the descending branch of the lateral circumflex femoral artery had a rather consistent connection with the lateral superior genicular artery or profunda femoral artery in the knee region. The pivot point, located at the distal portion of the vastus lateralis muscle, ranges from 3 to 10 cm above the knee. In their three cases, the maximal flap size was 7.0 x 16.0 cm and was harvested safely, without marginal necrosis. The mean pedicle length was 15.2 +/- 0.7 cm (range, 14.5 to 16 cm). The average proximal and distal retrograde blood pressure of the descending branch of the lateral circumflex femoral artery was also studied in another 11 patients, and the anterolateral thigh flap being used for reconstruction of head and neck defects showed 58.3 and 77.7 percent of proximal antegrade blood pressure, respectively. The advantages of this flap include a long pedicle length, a sufficient tissue supply, possible combination with fascia lata for tendon reconstruction, and favorable donor-site selection, without sacrifice of major vessels or muscles.  相似文献   

4.
The vasculature of the peroneal tissue transfer   总被引:5,自引:0,他引:5  
Peroneal vascularized composite-tissue transfer has many useful applications and advantages. An anatomic study of the peroneal artery and vein and their branches was carried out on 80 adult cadaver legs. The number of cutaneous branches averaged 4.8 +/- 1.4 per leg. The length of the cutaneous branches averaged 5.4 +/- 1.5 cm. The external diameters of cutaneous branches at the skin distribution site were 0.6 +/- 0.2 mm for the artery and 0.8 +/- 0.3 mm for the vein. The communicating branches were branched at anterior or posterior tibial vessels 6.1 +/- 2.4 cm proximal to the lateral malleolus. The range of rotation of the island flap when transposed proximally was 14.3 +/- 3.3 cm proximal from the head of the fibula, and when transposed distally, the range of rotation was 16.9 +/- 5.3 cm distally.  相似文献   

5.
Although the reverse temporalis muscle flap has been used clinically, the exact vascular connection between the superficial and deep temporal vessels has not been clearly defined. The purpose of this study was to investigate the vascular territory of the reverse temporalis muscle supplied by the superficial temporal vessels. Six cadaver heads were studied using a colored lead oxide injection through the superficial temporal artery. The specimens were examined macroscopically and radiographically. The reverse temporalis muscle flap was then applied to a clinical case presenting with traumatic anterior skull base defect communicating with the nasal cavity. The cadaver specimens demonstrated that the superficial temporal artery formed an average 1.3 +/- 0.2 cm in width of dense vascular zone, which was located within 1.8 cm below the superior temporal line. The dense vascular network further perfused the anterior and posterior deep temporal arteries and the muscular branch of the middle temporal artery to supply the temporalis muscle. The mean perfused area of the temporalis muscle was 83 percent, ranging from 79 to 89 percent, in five cadaver heads. One cadaver revealed only 55 percent of perfused area in the absence of the muscular branch of the middle temporal artery. The consistent area without perfusion was located in the distal third of the posterior portion of the reverse temporalis muscle. In clinical cases, the reverse temporalis muscle flap was used successfully to obliterate the anterior skull base defect without evidence of muscle flap necrosis. The exact blood supply to the distal third of the posterior portion of the reverse temporalis muscle flap needs to be investigated further in vivo. Particular attention was paid to the inclusion of the muscular branch of the middle temporal artery in this flap to augment the blood supply to the temporalis muscle.  相似文献   

6.
A 36-year-old woman sustained an amputation of her right leg at the thigh level and a degloving injury of her left foot and ankle region in an accident during a suicide attempt. Primarily, her left foot was covered with a split skin graft, resulting in a soft-tissue defect at the medial malleolus and at the calcaneus bone. Reconstruction was planned with a free latissimus dorsi muscle flap. Preoperative examinations revealed an arteria peronea magna with a hyperplastic peroneal artery solely providing arterial blood supply to the foot. The arteria peronea magna divided into two branches proximal to the upper ankle joint, replacing the dorsal pedis artery and the medial plantar artery. Tibial posterior and tibial anterior arteries were hypoplastic-aplastic. Microvascular end-to-end anastomoses of the flap vessels to the medial branch ("medial plantar artery") of the arteria peronea magna and its concomitant vein at the medial malleolar bone level were successfully performed. The postoperative course was uneventful. Four weeks postoperatively, the patient started walking assisted by a prosthesis on her right thigh stump. This experience demonstrates that even in a case of arteria peronea magna, free flap surgery for lower limb salvage is a reliable and worthwhile method.  相似文献   

7.
The potential hazards of using proximal segments of leg arteries for end-to-end anastomosis to vessels in free flaps are examined, and alternatives are proposed. The convservation of the major tibial arteries seems highly desirable, to minimize any subsequent development of ischemic complications. Turning a free flap upside down moves the anastomosis to the distal part of the extremity, thus conserving most of the muscular branches of the recipient artery. Cutting the recipient artery distally and bending it back in recurrent fashion also allows for easy end-to-end anastomosis, with many technical advantages.  相似文献   

8.
The blood supply of the periosteum of the human tibia was investigated by anatomical dissection of 12 lower extremities which were filled with injection mass. By division of the tibia into 4 segments (proximal and distal fifths; proximal and distal diaphysis) a general supplying system of the periosteum was found. The proximal fifth of the tibial periosteum is nourished by branches of the arteriae recurrentes tibiales anterior et posterior and the aa. inferiores medialis et lateralis genus. At the proximal diaphysis (next three tenths of the tibia) periosteal branches arise from the aa. tibialis anterior and posterior, whereas the distal diaphysis is nourished exclusively by semicircular vessels of the a. tibialis anterior which twine around the bone and merge with each other at the facies medialis. Concerning the periosteal blood supply of the distal fifth of the tibia, two different types were found. In two thirds of the cases the lateral side was nourished by branches of the a. tibialis anterior, which are supported by vessels from the a. fibularis. In one third the latter branch was absent so that the rami periostales arising from the a. tibialis anterior nourished the lateral aspect of the distal tibia alone. The dorsal region was supplied in all cases by rami of the a. fibularis and a. tibialis posterior. On the medial side the periosteal nourishment is ensured only by anastomosis. Branches of the a. tibialis anterior supply the facies lateralis and facies posterior where it is supported by vessels of the a. tibialis posterior and in a minor region of rami of the a. fibularis (distal) and a. poplitea (proximal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Clinical applications of two free lateral leg perforator flaps are described: a free soleus perforator flap that is based on the musculocutaneous perforator vessels from one of the three main arteries in the proximal lateral lower leg, and a free peroneal perforator flap that is based on the septocutaneous or direct skin perforator vessels from the peroneal artery in the distal and middle thirds of the lateral lower leg. The authors applied free soleus perforator flaps to 18 patients and free peroneal perforator flaps to five patients with soft-tissue defects. The recipient site was the great toe in 14 patients, the hand and fingers in five patients, the leg in two patients, and the upper arm and the jaw in one patient each. The largest soleus perforator flap was 15 x 9 cm, and the largest peroneal perforator flap was 9 x 4 cm. Vascular pedicle lengths ranged from 6.5 to 10 cm in soleus perforator flaps and from 4 to 6 cm in peroneal perforator flaps. All flaps, except for the flap in one patient in the peroneal perforator flap series, survived completely. Advantages of these flaps are that there is no need to sacrifice any main artery in the lower leg, and there is minimal morbidity at the donor site. For patients with a small to medium soft-tissue defect, these free perforator flaps are useful.  相似文献   

10.
Despite recent advances in microsurgical techniques, coverage of lower leg defects by locoregional flaps remains indicated in selected cases. The interest in these types of flaps has improved because recent clinical work advocates that fascial and fasciocutaneous flaps can be well indicated for bone coverage. The anatomical study of the medial adiposofascial flap is presented in this article. The flap is based on the rich vascular network supplied by the saphenous artery and the posterior tibial artery perforators. This flap can be harvested on the anteromedial aspect of the leg and can be mobilized to cover defects located between the patella and the heel. This multiple blood supply makes it possible to harvest this flap in various ways, so various defects can be covered. To confirm and prove the versatility and clinical value of this flap, the authors have studied a series of 22 cases in which this flap was used for coverage of lower leg defects. For these defects, especially when situated in the lower third or around the heel and ankle, coverage by a free flap is most often the only proposed solution. However, the authors have obtained excellent results in the majority of these cases, avoiding a free flap procedure. Moreover, in this way, the option of using a free flap remains possible if needed. There is minimal donor-site morbidity and a high functional and aesthetic outcome, making this flap a first-choice flap in selected cases of lower leg defects.  相似文献   

11.
Arterial T and Y grafts.   总被引:1,自引:0,他引:1  
Presented is the use of an autogenous arterial T graft for the salvage of a thrombosed arterial end-to-side anastomosis. The T-graft concept also offers the possibility of replacing a segment of artery in patients with arterial vessel wall defects, stenosis, obliteration, or disease during free latissimus dorsi or scapular flap transfer. The arterial T graft is harvested from the axilla and consists of segments of the subscapular, circumflex scapular, and thoracodorsal arteries. The large diameter of these vessels offers a good match with the arteries of the lower leg and forearm. The arterial Y graft consists of the same arteries and is used as an interpositional graft to revascularize two distal vessels from one proximal vessel.  相似文献   

12.
We report 20 chronic leg ulcers successfully treated by rotating an anterior tibial flap, which is a modification of the dorsalis pedis flap. The sizes of the flaps ranged from 6 x 6 cm up to 15 x 13 cm; the largest ones are not recommended, for fear of development of persistent lymphedema of the foot. These flaps are dissected upward through the leg and pedicled on the anterior tibial vessels, so they can be rotated to any site on the anterior, lateral, or medial side of the leg.  相似文献   

13.
The purpose of this article is to introduce the results of free tissue transfers using the technique of the cross-bridge microvascular anastomosis when the recipient lacks suitable vessels for anastomosis. Between May of 1982 and June of 2002, a series of 85 patients underwent this procedure. The transferred tissues were the free latissimus dorsi myocutaneous flap, the free vascularized fibula, the free fibular osteocutaneous flap, and the free iliac osteocutaneous flap, alone or in combination. The donor vessels were the anterior tibial artery and great saphenous vein, the posterior tibial artery and its venae comitantes, and the radial artery and cephalic vein. Good results were achieved. The success rate reached 95.29 percent. The authors believe this procedure can be performed in the event of serious tissue defect where the vessels are unsuitable for anastomosis.  相似文献   

14.
A posterior approach to the vessels of the lower leg, with particular emphasis on the posterior tibial artery, is presented as the method of choice for microvascular free-tissue transfer to the region. This approach offers wide exposure, better definition of the zone of injury, appropriate selection of the recipient vessel and of the site of anastomosis, and enough room for microsurgical work. Exposing the large posterior tibial artery down to the distal third of the lower leg facilitates the use of end-to-side anastomosis and makes the transfer of large muscle flaps to that region more predictable, in part by obviating the need for long vein grafts. This exposure leaves no functional and few aesthetic deficits.  相似文献   

15.
A free gracilis muscle transfer with skin graft was performed for reconstruction of a type IIIB lower extremity traumatic wound with acute exposure of the distal tibia fracture site and an extensive soft-tissue wound. The free muscle flap failed from a venous thrombosis that was recognized 12 hours postoperatively, and reexploration revealed extensive venous thrombosis throughout the lower leg. The flap was salvaged by direct catheter administration of heparin into the vena comitans of the gracilis artery, which bathed the newly repaired venous anastomosis with an anticoagulating dose of heparin without systemic elevation of the patient's PTT. Ultimate full flap survival and wound healing ensued.  相似文献   

16.
Defects of the skin and soft tissue in the region of the lateral malleolus of the ankle and the Achilles tendon, resulting in exposed bone, tendons, or osteosynthetic material, cannot be covered with free skin transplants. Local or free flaps must be employed. The authors present the construction of a peroneus brevis muscle flap with a distal pedicle as a useful alternative. Between 1993 and 1999, distal pedicled peroneus brevis muscle flaps were used in 19 patients with various types of defects. During construction of the flap, both the long peroneal muscle and the peroneal artery remained intact. In the region of the distal third of the fibula, consistently arranged branches run from the artery into the muscle, and these form the distal pedicle. The proximal portion of the muscle can be transposed distally and easily extends to the tip of the fibula and the attachment of the Achilles tendon to the calcaneus. Primary healing occurred in 16 patients undergoing flap construction. Donor-site morbidity was mostly limited to the donor-site scar. The distally pedicled peroneus brevis muscle flap is a reliable means for covering defects in the lower leg. This form of muscle flap has not yet been described in the known literature. In the authors' opinion, this flap constitutes a logical and valuable extension of local flap procedures for plastic surgery in the distal leg region.  相似文献   

17.
The anterior tibial artery flap: anatomic study and clinical application   总被引:5,自引:0,他引:5  
Satisfactory replacement of skin defects over the lower leg remains a difficult problem. Various forms of coverage, including, local rotation flaps, muscle flaps, and fascial and free flaps, have their specific indications and inherent disadvantages. In this work, a new axial skin flap based on perforating vessels in the territory of the anterior tibial artery is described. A series of 50 lower leg dissections was carried out in 25 fresh cadavers after latex injection into the femoral artery. Detailed studies of the cutaneous distribution of the anterior tibial artery showed that three main arteries perfuse the anterior lateral portion of the lower leg. The superior lateral peroneal artery and the inferior lateral peroneal artery interseptal cutaneous perforators arise at an average of 25.6 and 17.2 cm from the lateral malleolus, respectively. The superior lateral peroneal artery was present in 100 percent of the specimens, whereas the inferior lateral peroneal artery was present in 70 percent of the specimens. In their course, they give several muscular branches to the peroneus longus and brevis prior to perforating the fascia and arborizing in the subcutaneous tissues of the anterolateral portion of the leg. The average external diameter was 1.6 cm for the superior and 1.4 cm for the inferior lateral peroneal artery. The superficial peroneal nerve accessory artery is the third artery which contributes to the skin of the lower leg. It arises from the superior lateral peroneal artery in 30 percent of cases, from the inferior lateral peroneal artery in 40 percent, and from both in 30 percent. The artery runs along with the superficial peroneal nerve and gives several cutaneous perforators along its descending course. Several cutaneous axial flaps can be fashioned around this anatomy. The operative technique along with demonstrative clinical cases is presented followed by pertinent discussion.  相似文献   

18.
New buccinator myomucosal island flap: anatomic study and clinical application   总被引:14,自引:0,他引:14  
The authors studied the vascular anatomy of the buccinator muscle by dissecting fresh cadavers. The anatomy of the buccal branches of the facial artery consistently confirmed the existence of a posterior buccal branch, a few inferior buccal branches, and anterior buccal branches to the posterior, inferior, and anterior portions of the buccinator. The buccal artery and posterior buccal branch anastomose to each other and ramify over the muscle. Several veins originate from the lateral aspect of the muscle, converge into the buccal venous plexus, and drain into the facial vein (from two to four tributaries) or into the pterygoid plexus and the internal maxillary vein (from the buccal vein). These vessels and nerves enter the posterior half of the buccinator posterolaterally. The facial artery and vein are located at variable distances from each other around the oral commissure and the nasal base. Two patterns of buccinator musculomucosal island flaps supplied by these buccal arterial branches are proposed in this article. The buccal musculomucosal neurovascular island flap (posteriorly based), supplied by the buccal artery, its posterior buccal branch, and the long buccal nerve, can be passed through a tunnel under the pterygomandibular ligament for closure of mucosal defects in the palate, pharyngeal sites, the alveolus, and the floor of the mouth. The buccal musculomucosal reversed-flow arterial island flap (superiorly based), supplied by the distal portion of the facial artery through the anterior buccal branches, can be used to close mucosal defects in the anterior hard palate, alveolus, maxillary antrum, nasal floor and septum, lip, and orbit. The authors have used the flaps in 12 patients. There has been no flap necrosis, and results have been satisfactory, both aesthetically and functionally.  相似文献   

19.
Finding an appropriate soft-tissue grafting material to close a wound located over the ankle and heel can be a difficult task. The distally based lesser saphenous venofasciocutaneous flap mobilized from the posterior aspect of the upper leg, used as an island pedicle skin flap, can be useful for this purpose. The vascular supply to the flap is derived from the retrograde perfusion of the accompanying arteries of the lesser saphenous vein. These arteries descend along both sides of the lesser saphenous vein to the distal third of the leg, either terminating or anastomosing with the septocutaneous perforators of the peroneal artery. Between February of 1999 and March of 2001, four variants of this flap were applied in 21 individuals, including 11 fasciocutaneous, five fascial, three sensory, and two fasciomyocutaneous flaps. Skin defects among all patients were combined with bone, joint, and/or tendon exposure. The authors found that the flap was reliable and technically simple to design and execute. This one-stage procedure not only preserves the major arteries and the sural nerve of the injured leg, but it also has proved valuable for covering a weight-bearing heel and filling a deep defect, because it potentially provides protective sensation and a well-vascularized muscle fragment. When conventional local flaps are inadequate, this flap should be considered for its reliability and low associated morbidity.  相似文献   

20.
Reverse-flow island flap: clinical report and venous drainage   总被引:16,自引:0,他引:16  
Twenty-two reverse-flow island flaps were transferred. These included peroneal, forearm, anterior tibial, and temporal flaps. Sixteen of 22 flaps survived completely. We encountered partial necrosis in 4 flaps and total necrosis in only 2 flaps. We credit this success to the reliability and availability of the peroneal, forearm, and temporal flaps; but we do not encourage use of the anterior tibial flap. The flaps that survived well did not show any signs of venous congestion. The advantage of the reverse-flow island flap is that it can be transferred from a proximal to a distal location. Using cadavers and fresh amputated limbs, studies on venous drainage of the reverse-flow island flap were performed. The venae comitantes had numerous venous valves and communicating branches, but more than sufficient reflux of the venous blood occurred through the valves at pressures of 90 to 105 cmH2O. We believe that the venous drainage of the reverse-flow island flap occurs as a result of reflux actions at the valve, communicating branches between the venae comitantes, and bypass vessels around the valves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号