首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromatin is regulated at many different levels, from higher-order packing to individual nucleosome placement. Recent studies have shown that individual histone modifications, and combinations thereof, play a key role in modulating chromatin structure and gene activity. Reported here is an analysis of Arabidopsis histone H3 modifications by nanoflow-HPLC coupled to electrospray ionization on a hybrid linear ion trap-Fourier transform mass spectrometer (LTQ/FTMS). We find that the sites of acetylation and methylation, in general, correlate well with other plants and animals. Two well-studied modifications, dimethylation of Lys-9 (correlated with silencing) and acetylation of Lys-14 (correlated with active chromatin) while abundant by themselves were rarely found on the same histone H3 tail. In contrast, dimethylation at Lys-27 and monomethylation at Lys-36 were commonly found together. Interestingly, acetylation at Lys-9 was found only in a low percentage of histones while acetylation of Lys-14 was very abundant. The two histone H3 variants, H3.1 and H3.2, also differ in the abundance of silencing and activating marks confirming other studies showing that the replication-independent histone H3 is enriched in active chromatin.  相似文献   

2.
3.
In eukaryotic cell nuclei, DNA associates with the core histones H2A, H2B, H3 and H4 to form nucleosomal core particles. DNA binding to histones is regulated by posttranslational modifications of N-terminal tails (e.g., acetylation and methylation of histones). These modifications play important roles in the epigenetic control of chromatin structure. Recently, evidence that biotinidase and holocarboxylase synthetase (HCS) catalyze the covalent binding of biotin to histones has been provided. The primary aim of this study was to identify biotinylation sites in histone H2A and its variant H2AX. Secondary aims were to determine whether acetylation and methylation of histone H2A affect subsequent biotinylation and whether biotinidase and HCS localize to the nucleus in human cells. Biotinylation sites were identified using synthetic peptides as substrates for biotinidase. These studies provided evidence that K9 and K13 in the N-terminus of human histones H2A and H2AX are targets for biotinylation and that K125, K127 and K129 in the C-terminus of histone H2A are targets for biotinylation. Biotinylation of lysine residues was decreased by acetylation of adjacent lysines but was increased by dimethylation of adjacent arginines. The existence of biotinylated histone H2A in vivo was confirmed by using modification-specific antibodies. Antibodies to biotinidase and HCS localized primarily to the nuclear compartment, consistent with a role for these enzymes in regulating chromatin structure. Collectively, these studies have identified five novel biotinylation sites in human histones; histone H2A is unique among histones in that its biotinylation sites include amino acid residues from the C-terminus.  相似文献   

4.
5.
6.
7.
8.
A global view of all core histones in yeast is provided by tandem mass spectrometry of intact histones H2A, H2B, H4, and H3. This allowed detailed characterization of >50 distinct histone forms and their semiquantitative assessment in the deletion mutants gcn5Delta, spt7Delta, ahc1Delta, and rtg2Delta, affecting the chromatin remodeling complexes SAGA, SLIK, and ADA. The "top down" mass spectrometry approach detected dramatic decreases in acetylation on H3 and H2B in gcn5Delta cells versus wild type. For H3 in wild type cells, tandem mass spectrometry revealed a direct correlation between increases of Lys(4) trimethylation and the 0, 1, 2, and 3 acetylation states of histone H3. The results show a wide swing from 10 to 80% Lys(4) trimethylation levels on those H3 tails harboring 0 or 3 acetylations, respectively. Reciprocity between these chromatin marks was apparent, since gcn5Delta cells showed a 30% decrease in trimethylation levels on Lys(4) in addition to a decrease of acetylation levels on H3 in bulk chromatin. Deletion of Set1, the Lys(4) methyltransferase, was associated with the linked disappearance of both Lys(4) methylation and Lys(14) and Lys(18) or Lys(23) acetylation on H3. In sum, we have defined the "basis set" of histone forms present in yeast chromatin using a current mass spectrometric approach that both quickly profiles global changes and directly probes the connectivity of modifications on the same histone.  相似文献   

9.
10.
The clonal distribution and stable expression of killer cell Ig-like receptor (KIR) genes is epigenetically regulated. To assess the epigenetic changes that occur during hemopoietic development we examined DNA methylation and chromatin structure of the KIR locus in early hemopoietic progenitor cells and major lymphocyte lineages. In hemopoietic progenitor cells, KIR genes exhibited the major hallmarks of epigenetic repression, which are dense DNA methylation, inaccessibility of chromatin to Micrococcus nuclease digest, and a repressive histone signature, characterized by strong H3K9 dimethylation and reduced H4K8 acetylation. In contrast, KIR genes of NK cells showed active histone signatures characterized by absence of H3K9 dimethylation and presence of H4K8 acetylation. Histone modifications correlated well with the competence of different lymphocyte lineages to express KIR; whereas H4K8 acetylation was high in NK and CD8+ T cells, it was almost absent in CD4+ T cells and B cells and, in the latter case, replaced by H3K9 dimethylation. In KIR-competent lineages, active histone signatures were also observed in silent KIR genes and in this case found in combination with dense DNA methylation of the promoter and nearby regions. The study suggests a two-step model of epigenetic regulation in which lineage-specific acquisition of euchromatic histone marks is a prerequisite for subsequent gene-specific DNA demethylation and expression of KIR genes.  相似文献   

11.
12.
Recent studies reveal that posttranslational modifications on chromatin proteins, especially histones, organize genomic DNA and mediate various cellular responses to environmental influences. Quantitative mass spectrometric analysis is a powerful approach to reveal these dynamic events on chromatin in a systematic manner. Here, the effects of arsenic exposure on histone epigenetic state were investigated in human UROtsa cells, and a reduction in acetylation level on several histone H3 and H4 lysine residues was detected. Furthermore, MYST1 was shown to be the major histone acetyltransferase for H4 Lys16 and protect UROtsa cells from arsenic toxicity.  相似文献   

13.
14.
15.
Folding of DNA into chromatin is mediated by binding to histones such as H4; association of DNA with histones is regulated by covalent histone modifications, e.g. acetylation, methylation, and biotinylation. We sought to identify amino-acid residues that are biotinylated in histone H4, and to determine whether acetylation and methylation of histones affect biotinylation. Synthetic peptides spanning fragments of human histone H4 were biotinylated enzymatically using biotinidase. Peptide-bound biotin was probed with streptavidin-peroxidase. Peptides based on the N-terminal sequence of histone H4 were effectively recognized by biotinidase as substrates for biotinylation; in contrast, peptides based on the C-terminal sequences were not biotinylated. Substitution of K8 or K12 with alanine or arginine decreased biotinylation, suggesting that these lysines are targets for biotinylation; K8 and K12 are also known targets for acetylation. Chemical acetylation or methylation of a given lysine decreased subsequent enzymatic biotinylation of neighboring lysines, consistent with cross-talk among histone modifications. Substitution of a given lysine (positive charge) with glutamate (negative charge) abolished biotinylation of neighboring lysines, providing evidence that the net charge of histones has a role in biotinylation. An antibody was generated that specifically recognized histone H4 biotinylated at K12. This antibody was used to detect biotinylated histone H4 in nuclear extracts from human cells. These studies suggest that K8 and K12 in histone H4 are targets for biotinylation, that acetylation and biotinylation compete for the same binding sites, and that acetylation and methylation of histones affect biotinylation of neighboring lysines.  相似文献   

16.
17.
18.
19.
To study 3D nuclear distributions of epigenetic histone modifications such as H3(K9) acetylation, H3(K4) dimethylation, H3(K9) dimethylation, and H3(K27) trimethylation, and of histone methyltransferase Suv39H1, we used advanced image analysis methods, combined with Nipkow disk confocal microscopy. Total fluorescence intensity and distributions of fluorescently labelled proteins were analyzed in formaldehyde-fixed interphase nuclei. Our data showed reduced fluorescent signals of H3(K9) acetylation and H3(K4) dimethylation (di-me) at the nuclear periphery, while di-meH3(K9) was also abundant in chromatin regions closely associated with the nuclear envelope. Little overlapping (intermingling) was observed for di-meH3(K4) and H3(K27) trimethylation (tri-me), and for di-meH3(K9) and Suv39H1. The histone modifications studied were absent in the nucleolar compartment with the exception of H3(K9) dimethylation that was closely associated with perinucleolar regions which are formed by centromeres of acrocentric chromosomes. Using immunocytochemistry, no di-meH3(K4) but only dense di-meH3(K9) was found for the human acrocentric chromosomes 14 and 22. The active X chromosome was observed to be partially acetylated, while the inactive X was more condensed, located in a very peripheral part of the interphase nuclei, and lacked H3(K9) acetylation. Our results confirmed specific interphase patterns of histone modifications within the interphase nuclei as well as within their chromosome territories.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号