首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.  相似文献   

6.
7.
8.
9.
10.
11.
In eukaryotes, the post-translational addition of methyl groups to histone H3 lysine 4 (H3K4) plays key roles in maintenance and establishment of appropriate gene expression patterns and chromatin states. We report here that an essential locus within chromosome 3L centric heterochromatin encodes the previously uncharacterized Drosophila melanogaster ortholog (dSet1, CG40351) of the Set1 H3K4 histone methyltransferase (HMT). Our results suggest that dSet1 acts as a "global" or general H3K4 di- and trimethyl HMT in Drosophila. Levels of H3K4 di- and trimethylation are significantly reduced in dSet1 mutants during late larval and post-larval stages, but not in animals carrying mutations in genes encoding other well-characterized H3K4 HMTs such as trr, trx, and ash1. The latter results suggest that Trr, Trx, and Ash1 may play more specific roles in regulating key cellular targets and pathways and/or act as global H3K4 HMTs earlier in development. In yeast and mammalian cells, the HMT activity of Set1 proteins is mediated through an evolutionarily conserved protein complex known as Complex of Proteins Associated with Set1 (COMPASS). We present biochemical evidence that dSet1 interacts with members of a putative Drosophila COMPASS complex and genetic evidence that these members are functionally required for H3K4 methylation. Taken together, our results suggest that dSet1 is responsible for the bulk of H3K4 di- and trimethylation throughout Drosophila development, thus providing a model system for better understanding the requirements for and functions of these modifications in metazoans.  相似文献   

12.
13.
Aging decreases the fertility of mammalian females. In old oocytes at metaphase II stage (MII) there are alterations of the chromatin configuration and chromatin modifications such as histone acetylation. Recent data indicate that alterations of histone acetylation at MII initially arise at germinal vesicle stage (GV). Therefore, we hypothesized that the chromatin configuration and histone methylation could also change in old GV oocytes. In agreement with our hypothesis, young GV oocytes had non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) chromatin configurations, while old GV oocytes also had chromatin configurations that could not be classified as NSN or SN. Regarding histone methylation, young GV and MII oocytes showed dimethylation of lysines 4, 9, 36 and 79 in histone 3 (H3K4me2, H3K9me2, H3K36me2, H3K79me2), lysine 20 in histone H4 (H4K20me2) and trimethylation of lysine 9 in histone 3 (H3K9me3) while a significant percentage of old GV and MII oocytes lacked H3K9me3, H3K36me2, H3K79me2 and H4K20me2. The percentage of old oocytes lacking histone methylation was similar at GV and MII suggesting that alterations of histone methylation in old MII oocytes initially arise at GV. Besides, the expression of the histone methylation-related factors Cbx1 and Sirt1 was also found to change in old GV oocytes. In conclusion, our study reports changes of chromatin configuration and histone methylation in old GV oocytes, which could be very useful for further understanding of human infertility caused by aging.  相似文献   

14.
15.
16.
《Theriogenology》2011,75(9):1539-1547
Aging decreases the fertility of mammalian females. In old oocytes at metaphase II stage (MII) there are alterations of the chromatin configuration and chromatin modifications such as histone acetylation. Recent data indicate that alterations of histone acetylation at MII initially arise at germinal vesicle stage (GV). Therefore, we hypothesized that the chromatin configuration and histone methylation could also change in old GV oocytes. In agreement with our hypothesis, young GV oocytes had non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) chromatin configurations, while old GV oocytes also had chromatin configurations that could not be classified as NSN or SN. Regarding histone methylation, young GV and MII oocytes showed dimethylation of lysines 4, 9, 36 and 79 in histone 3 (H3K4me2, H3K9me2, H3K36me2, H3K79me2), lysine 20 in histone H4 (H4K20me2) and trimethylation of lysine 9 in histone 3 (H3K9me3) while a significant percentage of old GV and MII oocytes lacked H3K9me3, H3K36me2, H3K79me2 and H4K20me2. The percentage of old oocytes lacking histone methylation was similar at GV and MII suggesting that alterations of histone methylation in old MII oocytes initially arise at GV. Besides, the expression of the histone methylation-related factors Cbx1 and Sirt1 was also found to change in old GV oocytes. In conclusion, our study reports changes of chromatin configuration and histone methylation in old GV oocytes, which could be very useful for further understanding of human infertility caused by aging.  相似文献   

17.
Shi J  Dawe RK 《Genetics》2006,173(3):1571-1583
We report a detailed analysis of maize chromosome structure with respect to seven histone H3 methylation states (dimethylation at lysine 4 and mono-, di-, and trimethylation at lysines 9 and 27). Three-dimensional light microscopy and the fine cytological resolution of maize pachytene chromosomes made it possible to compare the distribution of individual histone methylation events to each other and to DNA staining intensity. Major conclusions are that (1) H3K27me2 marks classical heterochromatin; (2) H3K4me2 is limited to areas between and around H3K27me2-marked chromomeres, clearly demarcating the euchromatic gene space; (3) H3K9me2 is restricted to the euchromatic gene space; (4) H3K27me3 occurs in a few (roughly seven) focused euchromatic domains; (5) centromeres and CENP-C are closely associated with H3K9me2 and H3K9me3; and (6) histone H4K20 di- and trimethylation are nearly or completely absent in maize. Each methylation state identifies different regions of the epigenome. We discuss the evolutionary lability of histone methylation profiles and draw a distinction between H3K9me2-mediated gene silencing and heterochromatin formation.  相似文献   

18.
We analysed the distribution of histone H3 modifications in the nucleus of the vegetative cell (the vegetative nucleus) during pollen development in lily (Lilium longiflorum). Among the modifications specifically and/or abundantly present in the vegetative nucleus, dimethylation of histone H3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) were found in heterochromatin, whereas trimethylation of histone H3 at lysine 27 (H3K27me3) was localized in euchromatin in the vegetative nucleus. Such unique localization of the histone H3 methylation marks, particularly of H3K27me3, within a nucleus was not observed in lily nuclei other than the vegetative nucleus. The level of H3K27me3 increased in the euchromatic region of the vegetative nucleus during pollen maturation. The results suggest that H3K27me3 controls the gene expression of the vegetative cell during pollen maturation.  相似文献   

19.
20.
The function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome‐wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double‐strand breaks (DSBs) that initiate interhomologue recombination, essential to yield viable haploid gametes. We find that the level of H3K4me3 is constitutively higher close to DSB sites, independently of local gene expression levels. Without Set1, the H3K4 methylase, 84% of the DSB sites exhibit a severely reduced DSB frequency, the reduction being quantitatively correlated with the local level of H3K4me3 in wild‐type cells. Further, we show that this differential histone mark is already established in vegetative cells, being higher in DSB‐prone regions than in regions with no or little DSB. Taken together, our results demonstrate that H3K4me3 is a prominent and preexisting mark of active meiotic recombination initiation sites. Novel perspectives to dissect the various layers of the controls of meiotic DSB formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号