首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we report about the role that tumor structure and extracellular matrix (ECM) may play in immunotherapy and in gene therapy using adenoviruses. We performed studies in a rat model for colorectal cancer, CC531, and in specimens of human colorectal cancer. The tumors were composed of two compartments, tumor cell nests surrounded by stromal cells. ECM proteins were expressed in the stromal part, where the blood vessels were also located. Furthermore, in several tumors, the tumor cell nests were surrounded by basal membrane-like structures. Therefore, in vascular approaches to treat cancer, therapeutic agents on their route to tumor cells may be hampered by ECM to reach tumor cells. We found that immune cells were abundantly present in tumors from colorectal origin. These cells were, however, not found in direct contact with tumor cells, but mainly in the stromal part of the tumor. Adenoviruses, when intravascularly injected, did not reach tumor cells in the CC531 rat model. Tumor cells were only infected, and even then in limited numbers, in cases of intratumoral injection. We hypothesize that ECM in a tumor is a barrier both for immune cells and for adenoviruses to make direct contact with these tumor cells, and thus limits colorectal tumor therapy.  相似文献   

2.
Summary The human immune system is comprised of several types of cells that have the potential to eradicate tumors without inflicting damage on normal tissue. Over the past decade, progress in the understanding of tumor biology and immunology has offered the exciting possibility of treating malignant disease with vaccines that exploit the capacity of T cells to effectively and selectively kill tumor cells. However, the immune system frequently fails to mount a successful defense against cancers despite vaccination with tumor-associated antigens. The ability of these vaccines to generate an abundant supply of armed effector T cells is often limited by immunoregulatory signaling pathways that suppress T cell activation. In addition, many tumors create a local microenvironment that inhibits the function of T cells. The attenuation of these pathways, which facilitate the evasion of tumors from immune surveillance, thus represents a potentially effective approach for cancer immunotherapy. Specifically, it may be of interest to modify the properties of dendritic cells, T cells, and tumor cells to downregulate the expression of proteins that diminish the immune response to cancers. RNA interference (RNAi) techniques have developed into a highly effective means of intracellular gene ‘knockdown’ and may be successfully employed in this way to improve cancer immunotherapies. This strategy has recently been explored both in vitro and in vivo, and has generated significantly enhanced antitumor immunity in numerous studies. Nevertheless, several practical concerns remain to be resolved before RNAi technology can be implemented safely and efficiently in humans. As novel developments and discoveries in molecular biology rapidly continue to unfold, it is likely that this technology may soon translate into a potent form of gene silencing in the clinic with profound applications to cancer immunotherapy.  相似文献   

3.
The spontaneous release of tumor cell antigens from the cell surface into the circulation has been proposed as a mechanism whereby tumors may escape the immune response of the host. In this study we have found that Ehrlich ascites tumor cells after removal from the host (mouse) spontaneously release significant amounts of cell surface components during incubation for 1 h in cold isotonic buffer. Immunodiffusion studies revealed that immunoglobulin G (IgG) and a complement component (C3) are included in this spontaneously released material. These surface-bound humoral immune components are apparently released in the form of a high-molecular-weight aggregate (cell coat particle) as shown by ultracentrifugation and ultrafiltration experiments. Precipitation of IgG from the cell coat particle preparation with antibodies directed against mouse IgG followed by detergent gel electrophoresis of the immune precipitate revealed five major bands in addition to the heavy and light chains of IgG. These results suggest that host IgG is tightly bound to several other components at the cell surface, perhaps in the form of immune complexes. IgG is localized on the tumor cell surface in a highly heterogeneous pattern with the appearance of patches and caps in some cells as shown by immuno-fluorescence analysis. The possibility that humoral immune components bind to the tumor cell surface and result in the shedding of high-molecular-weight aggregates of cell surface antigens into extracellular fluids is discussed.  相似文献   

4.
In spite of advances in surgical and medical care pancreatic cancer remains a leading cause of cancer-related death in the United States. An understanding of cancer cell interactions with host cells is critical to our ability to develop effective antitumor therapeutics for pancreatic cancer. We report here a color-coded model system for imaging cancer cell interactions with host immune cells within the native pancreas. A human pancreatic cancer cell line engineered to express green fluorescent protein (GFP) in the nucleus and red fluorescent protein (DsRed2) in the cytoplasm was orthotopically implanted into the pancreas of a nude mouse. After 10-14 days red or green fluorescent splenocytes from immune-competent donors were delivered systemically to the pancreatic cancer-bearing nude mice. Animals were imaged after splenocyte delivery using high-resolution intravital imaging systems. At 1 day after iv injection red or green fluorescent spleen cells were found distributed in lung, liver, spleen and pancreas. By 4 days after cell delivery, however, the immune cells could be clearly imaged surrounding the tumor cells within the pancreas as well as collecting within lymphatic tissues such as lymph nodes and spleen. With the high-resolution intravital imaging afforded by the Olympus IV100 and OV100 systems the interactions of the dual-colored cancer cells and the red fluorescent spleen cells could be clearly imaged in this orthotopic pancreatic cancer model. This color-coded in vivo imaging technology offers a novel approach to imaging the interactions of cancer and immune cells in the tumor microenvironment (TME).  相似文献   

5.
6.
Lung cancer development involves multiple genetic abnormalities leading to malignant transformation of the bronchial epithelial cells, followed by invasion and metastasis. One of the most common changes is mutation of the p53 tumor suppressor gene. The frequency of p53 alterations in lung cancer is highest in small cell and squamous cell carcinomas. A genetic “signature” of the type of p53 mutations has been associated with carcinogens in cigarette smoke. The majority of clinical studies suggest that lung cancers with p53 alterations carry a worse prognosis, and may be relatively more resistant to chemotherapy and radiation. An understanding of the role of p53 in human lung cancer may lead to more rational targeted approaches for treating this disease. P53 gene replacement is currently under clinical investigation but clearly more effective means of gene deliver to the tumor cells are required. Novel approaches to lung cancer therapy are needed to improve the observed poor patient survival despite current therapies.  相似文献   

7.
Tumors arise through waves of genetic alterations and clonal expansion that allow tumor cells to acquire cancer hallmarks, such as genome instability and immune evasion. Recent genomic analyses showed that the vast majority of cancer driver genes are mutated in a tissue-dependent manner, that is, are altered in some cancers but not others. Often the tumor type also affects the likelihood of therapy response. What is the origin of tissue specificity in cancer? Recent studies suggest that both cell-intrinsic and cell-extrinsic factors play a role. On one hand, cell type–specific wiring of the cell signaling network determines the outcome of cancer driver gene mutations. On the other hand, the tumor cells’ exposure to tissue-specific microenvironments (e.g. immune cells) also contributes to shape the tissue specificity of driver genes and of therapy response. In the future, a more complete understanding of tissue specificity in cancer may inform methods to better predict and improve therapeutic outcomes.  相似文献   

8.

Background

The genetic diversity of cancer and the dynamic interactions between heterogeneous tumor cells, the stroma and immune cells present daunting challenges to the development of effective cancer therapies. Although cancer biology is more understood than ever, this has not translated into therapies that overcome drug resistance, cancer recurrence and metastasis. The future development of effective therapies will require more understanding of the dynamics of homeostatic dysregulation that drives cancer growth and progression.

Results

Cancer dynamics are explored using a model involving genes mediating the regulatory interactions between the signaling and metabolic pathways. The exploration is informed by a proposed genetic dysregulation measure of cellular processes. The analysis of the interaction dynamics between cancer cells, cancer associated fibroblasts, and tumor associate macrophages suggests that the mutual dependence of these cells promotes cancer growth and proliferation. In particular, MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by amino acids recycled from the stroma. This leads to a proliferative growth supported by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine sourced from the stroma. In other words, while genetic aberrations ignite carcinogenesis and lead to the dysregulation of key cellular processes, it is postulated that the dysregulation of metabolism locks cancer cells in a state of mutual dependence with the tumor microenvironment and deepens the tumor’s inflammation and immunosuppressive state which perpetuates as a result the growth and proliferation dynamics of cancer.

Conclusions

Cancer therapies should aim for a progressive disruption of the dynamics of interactions between cancer cells and the tumor microenvironment by targeting metabolic dysregulation and inflammation to partially restore tissue homeostasis and turn on the immune cancer kill switch. One potentially effective cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor microenvironment to a state of reduced inflammation so as to enable an effective intervention of the immune system. The translation of this therapeutic approach into treatment regimens would however require more understanding of the adaptive complexity of cancer resulting from the interactions of cancer cells with the tumor microenvironment and the immune system.
  相似文献   

9.
肿瘤进展与人免疫系统间的联系已经被广泛研究,有许多免疫分子已被证实参与其中。CD47(整合素相关蛋白)为一种免疫球蛋白超家族成员,在人免疫系统中发挥着重要功能。研究表明CD47在肿瘤细胞表面也有高表达,其高表达与肿瘤的生长、转移及复发等密切相关。肿瘤细胞表面的CD47与巨噬细胞表面的SIRPα相互作用,并发出“别吃我”的免疫抑制性信号,从而保护肿瘤细胞免受巨噬细胞吞噬。因此,开发以CD47为靶点的拮抗剂可阻断此抑制性信号,从而增强巨噬细胞的吞噬效应,以达到增强抗肿瘤免疫反应的目的。最新研究证实,CD47拮抗剂在T细胞介导的抗肿瘤免疫反应中也发挥了重要作用。本文将对CD47分子的结构功能、在抗肿瘤免疫反应中的作用及以其为靶点的拮抗剂研究进展进行综述,以期为进一步的药物开发及临床研究等提供参考。  相似文献   

10.
The tumor immune microenvironment (TIME) is the cellular environment in which tumors exist. This includes: surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, lymphocytes, signaling molecules, immune checkpoint proteins and the extracellular matrix (ECM). The TIME plays a critical role in cancer progression and regulation. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells. The molecules and cells in the TIME influence disease outcome by altering the balance of suppressive versus cytotoxic responses in the vicinity of the tumor. Having a better understanding of the tumor immune microenvironment will pave the way for identifying new targets for immunotherapies that promote cancer elimination.  相似文献   

11.
已知细胞间的信息交流不仅可以通过直接接触,或释放信号分子等方式,同时还存在另一种细胞通讯方式即释放外泌体。外泌体是由细胞分泌,直径为30~100 nm的囊泡结构。外泌体含有蛋白质、脂质、mRNAs和miRNAs等成分,并且能够靶向运输到其他细胞或组织中,从而在细胞间的信息交流、物质传递方面发挥重要作用。本文对外泌体的基本特征、形成过程、功能以及在疾病诊断与治疗中的应用等方面进行简要综述,重点介绍外泌体在免疫调控和肿瘤发生方面的功能。外泌体作为一种广泛存在的亚细胞成分,虽然体积小,组成成分简单,然而,其复杂功能具有重要的研究价值。对外泌体功能的深入了解将为肿瘤等疾病的预防和治疗提供更多的诊断标志物、疫苗以及治疗思路与手段。  相似文献   

12.
Establishment of an immune response against cancer may depend on the capacity of dendritic cells to transfer tumor Ags into T cell-rich areas. To check this possibility, we used a colon cancer cell variant that yields tumors undergoing complete T cell-dependent rejection when injected into syngeneic rats. We previously demonstrated that immunogenicity of these tumors depended on the early apoptosis of a part of these tumor cells. In this paper we show that fluorescent tumor cell proteins are released from FITC-labeled tumor cells and undergo engulfment by tumor-infiltrating monocytes without a phenotype of mature dendritic cells or macrophages. Fluorescence-labeled mononuclear cells with a phenotype of MHC class II+ dendritic cells are also found in the T cell areas of the draining lymph nodes. Interestingly, no fluorescent cell can be found in lymph nodes after a s.c. injection of Bcl2-transfected apoptosis-resistant tumor cells that yielded progressive tumors. Proliferation of tumor-immune T lymphocytes was induced by dendritic cells isolated from the draining lymph nodes recovered after a s.c. injection of apoptosis-sensitive, but not apoptosis-resistant, tumor cells. These results show that tumor cell apoptosis releases proteins that are engulfed by inflammatory cells in the tumor, then transported to lymph node T cell areas where they can induce a specific immune response leading to tumor rejection.  相似文献   

13.
14.
Colorectal cancer (CRC) is still considered as the third most frequent cancer in the world. Microsatellite instability (MSI), inflammation, and microRNAs have been demonstrated as the main contributing factors in CRC. Subtype 1 CRC is defined by NK cells infiltration, induction of Th1 lymphocyte and cytotoxic T cell responses as well as upregulation of immune checkpoint proteins including programmed cell death-1 (PD-1). Based on the diverse features of CRC, such as the stage and localization of the tumor, several treatment approaches are available. However, the efficiency of these treatments may be decreased due to the development of diverse resistance mechanisms. It has been proven that monoclonal antibodies (mAbs) can increase the effectiveness of CRC treatments. Nowadays, several mAbs including nivolumab and pembrolizumab have been approved for the treatment of CRC. Immune checkpoint receptors including PD-1 can be inhibited by these antibodies. Combination therapy gives an opportunity for advanced treatment for CRC patients. In this review, an update has been provided on the molecular mechanisms involved in MSI colorectal cancer immune microenvironment by focusing on PD-ligand 1 (PD-L1) and treatment of patients with advanced immunotherapy, which were examined in the different clinical trial phases. Considering induced expression of PD-L1 by conventional chemotherapeutics, we have summarized the role of PD-L1 in CRC, the chemotherapy effects on the PD-1/PD-L1 axis and novel combined approaches to enhance immunotherapy of CRC by focusing on PD-L1.  相似文献   

15.
Pancreatic cancer is a highly aggressive, treatment refractory disease and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas over-express altered forms of a tumor-associated antigen, MUC1 (an epithelial mucin glycoprotein), which is a target for immunotherapy. Using a clinically relevant mouse model of pancreas cancer that demonstrates peripheral and central tolerance to human MUC1 and develops spontaneous tumors of the pancreas, we have previously reported the presence of functionally active, low affinity, MUC1-specific precursor cytotoxic T cells (pCTLs). Hypothesis for this study is that MUC1-based immunization may enhance the low level MUC1-specific immunity that may lead to an effective anti-tumor response. Data demonstrate that MUC1 peptide-based immunization elicits mature MUC1-specific CTLs in the peripheral lymphoid organs. The mature CTLs secrete IFN-gamma and are cytolytic against MUC1-expressing tumor cells in vitro. However, active CTLs that infiltrate the pancreas tumor microenvironment become cytolytically anergic and are tolerized to MUC1 antigen, allowing the tumor to grow. We demonstrate that the CTL tolerance could be reversed at least in vitro with the use of anti-CD40 co-stimulation. The pancreas tumor cells secrete immunosuppressive cytokines, including IL-10 and TGF-beta that are partly responsible for the down-regulation of CTL activity. In addition, they down-regulate their MHC class I molecules to avoid immune recognition. CD4+ CD25+ T regulatory cells, which secrete IL-10, were also found in the tumor environment. Together these data indicate the use of several immune evasion mechanisms by tumor cells to evade CTL killing. Thus altering the tumor microenvironment to make it more conducive to CTL killing may be key in developing a successful anti-cancer immunotherapy.  相似文献   

16.
Cellular senescence is an anti‐proliferative program that restricts the propagation of cells subjected to different kinds of stress. Cellular senescence was initially described as a cell‐autonomous tumor suppressor mechanism that triggers an irreversible cell cycle arrest that prevents the proliferation of damaged cells at risk of neoplastic transformation. However, discoveries during the last decade have established that senescent cells can also impact the surrounding tissue microenvironment and the neighboring cells in a non‐cell‐autonomous manner. These non‐cell‐autonomous activities are, in part, mediated by the selective secretion of extracellular matrix degrading enzymes, cytokines, chemokines and immune modulators, which collectively constitute the senescence‐associated secretory phenotype. One of the key functions of the senescence‐associated secretory phenotype is to attract immune cells, which in turn can orchestrate the elimination of senescent cells. Interestingly, the clearance of senescent cells seems to be critical to dictate the net effects of cellular senescence. As a general rule, the successful elimination of senescent cells takes place in processes that are considered beneficial, such as tumor suppression, tissue remodeling and embryonic development, while the chronic accumulation of senescent cells leads to more detrimental consequences, namely, cancer and aging. Nevertheless, exceptions to this rule may exist. Now that cellular senescence is in the spotlight for both anti‐cancer and anti‐aging therapies, understanding the precise underpinnings of senescent cell removal will be essential to exploit cellular senescence to its full potential.  相似文献   

17.
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.  相似文献   

18.
Monitoring of immunotherapeutic clinical trials has undergone a considerable change in the last decade resulting in a general agreement that immune monitoring should guide the development of cancer vaccines. The emphasis on immune cell functions and quantitation of antigen-specific T cells have been playing a major role in the attempts to establish meaningful correlations between therapy-induced alterations in immune responses and clinical endpoints. However, one significant unresolved issue in modern immunotherapy is that when a tumor-specific cellular immune response is observed following the course of immunotherapy, it does not always lead to clinically proven cancer regression. This disappointing lack of a correlation between the tumor-specific cytotoxic immune responses and the clinical efficacy of immunotherapy may be explained, among other reasons, by the notion that the analysis of any single immunological parameter is not sufficient to provide clinically feasible information about the complex interactions between different cell subsets in the peripheral blood and immune, tumor, and stromal cells in the tumor milieu. By contrast, a systemic approach is required for improving the quality of a serial monitoring to ensure that it adequately and reliably measures potential changes induced in patients by administered vaccines or immunomodulators. Comprehensive evaluation of the balance between the immunostimulatory and immunosuppressive compartments of the immune system could be critical for a better understanding of how a given immunotherapy works or does not work in a particular clinical trial. New approaches to characterize tumor-infiltrating leukocytes, their phenotypic, biochemical, and genetic characteristics within the tumor microenvironment need to be developed and validated and should complement current monitoring techniques. These immune-monitoring assays for the local tumor immunoenvironment should be developed, validated, and standardized for reliability and consistency in order to establish the overall performance standards.  相似文献   

19.
外泌体是细胞分泌的一种纳米级囊泡结构,在血液、唾液、尿液等多种体液中均有分布.作为一类重要的细胞间通信分子,外泌体含有多种具有生物活性的成分,可通过多种方式在人体中发挥调节作用.目前在多种类型的细胞中均发现外泌体的存在,而肿瘤细胞来源的外泌体由于其本身的特性和功能特点,可通过微环境介导肿瘤细胞的增生、血管形成和免疫耐受,并可通过介导上皮-间质转化(epithelial-mesenchymal transition, EMT)
和胞内药物排斥反应等增加肿瘤细胞的化疗抵抗能力.同时,因其含有肿瘤细胞所分泌的特异性成分,因而可通过对外泌体中相关分子改变的检测,对疾病进行诊断和监测,并可为临床个体化用药提供新思路.  相似文献   

20.
While there are many obstacles to immune destruction of autologous tumors, there is mounting evidence that tumor antigen recognition does occur. Unfortunately, immune recognition rarely controls clinically significant tumors. Even the most effective immune response will fail if tumors fail to express target antigens. Importantly, reduced tumor antigen expression often results from changes in gene regulation rather than irrevocable loss of genetic information. Such perturbations are often reversible by specific compounds or biological mediators, prompting a search for agents with improved antigen-enhancing properties. Some recent findings have suggested that certain conventional chemotherapeutic agents may have beneficial properties for cancer treatment beyond their direct cytotoxicities against tumor cells. Accordingly, we screened an important subset of these agents, topoisomerase inhibitors, for their effects on antigen levels in tumor cells. Our analyses demonstrate upregulation of antigen expression in a variety of melanoma cell lines and gliomas in response to nanomolar levels of certain specific topoisomerase inhibitors. To demonstrate the ability of CD8+ T cells to recognize tumors, we assayed cytokine secretion in T cells transfected with T cell receptors directed against Melan-A/MART-1 antigen. Three days of daunorubicin treatment resulted in enhanced antigen expression by tumor cells, in turn inducing co-cultured antigen-specific T cells to secrete Interleukin-2 and Interferon-γ. These results demonstrate that specific topoisomerase inhibitors can augment melanoma antigen production, suggesting that a combination of chemotherapy and immunotherapy may be of potential value in the treatment of otherwise insensitive cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号