首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we investigated the effect of acute-phase levels of C-reactive protein (CRP) on cytokine production by pulmonary macrophages in the presence or absence of pulmonary surfactant. Both human alveolar and interstitial macrophages as well as human surfactant were obtained from multiple organ donor lungs. Precultured macrophages were stimulated with LPS alone or together with IFN-gamma in the presence or absence of CRP, surfactant, and combinations. Releases of TNF-alpha and of IL-1beta to the medium were determined. We found that CRP could modulate lung inflammation in humans by decreasing the production of proinflammatory cytokines by both alveolar and interstitial macrophages stimulated with LPS alone or together with IFN-gamma. The potential interaction between CRP and surfactant phospholipids did not overcome the effect of either CRP or surfactant on TNF-alpha and IL-1beta release by lung macrophages. On the contrary, CRP and pulmonary surfactant together had a greater inhibitory effect than either alone on the release of proinflammatory cytokines by lung macrophages.  相似文献   

2.
The capacity of 12 cytokines to induce NO2- or H2O2 release from murine peritoneal macrophages was tested by using resident macrophages, or macrophages elicited with periodate, casein, or thioglycollate broth. Elevated H2O2 release in response to PMA was observed in resident macrophages after a 48-h incubation with IFN-gamma, TNF-alpha, TNF-beta, or CSF-GM. Of these, only IFN-gamma induced substantial NO2- secretion during the culture period. The cytokines inactive in both assays under the conditions tested were IL-1 beta, IL-2, IL-3, IL-4, IFN-alpha, IFN-beta, CSF-M, and transforming growth factor-beta 1. Incubation of macrophages with IFN-gamma for 48 h in the presence of LPS inhibited H2O2 production but augmented NO2- release, whereas incubation in the presence of the arginine analog NG-monomethylarginine inhibited NO2- release but not H2O2 production. Although neither TNF-alpha nor TNF-beta induced NO2- synthesis on its own, addition of either cytokine together with IFN-gamma increased macrophage NO2- production up to six-fold over that in macrophages treated with IFN-gamma alone. Moreover, IFN-alpha or IFN-beta in combination with LPS could also induce NO2- production in macrophages, as was previously reported for IFN-gamma plus LPS. These data suggest that: 1) tested as a sole agent, IFN-gamma was the only one of the 12 cytokines capable of inducing both NO2- and H2O2 release; 2) the pathways leading to secretion of H2O2 and NO2- are independent; 3) either IFN-gamma and TNF-alpha/beta or IFN-alpha/beta/gamma and LPS can interact synergistically to induce NO2- release.  相似文献   

3.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

4.
We sought to determine the impact of bovine IFN-gamma on the interaction between Mycobacterium bovis and bovine macrophages. Bovine macrophages released small amounts of nitric oxide (NO), TNF-alpha, IL-1beta and IL-12 upon infection with bacille Calmette-Guérin (BCG). Prior pulsing of cells with IFN-gamma significantly enhanced the release of NO and IL-12. Infection of bovine macrophages with virulent M. bovis led to the release of higher levels of pro-inflammatory mediators, compared to levels released upon BCG infection. IFN-gamma treatment of macrophages enhanced the release of pro-inflammatory mediators, but did not modify bacterial replication in M. bovis-infected macrophages. Treatment of macrophages with a combination of IFN-gamma and LPS led to a reduction in bacterial replication. Infected cells treated with IFN-gamma/LPS progressed mostly through an apoptotic pathway, whereas untreated infected cells eventually died by necrosis. Agents that prevented the acquisition of bacteriostatic activity by activated macrophages also prevented the induction of apoptosis in infected macrophages (IL-10 and neutralizing anti-TNF-alpha). We conclude that virulent M. bovis is a major determinant of release of pro-inflammatory cytokines by macrophages. IFN-gamma amplifies the macrophage cytokine release in response to M. bovis. Induction of apoptosis is closely linked to the emergence of macrophage resistance to M. bovis replication, which is dependent on endogenous TNF-alpha release.  相似文献   

5.
IL-1 alpha and IL-1 beta are proinflammatory cytokines involved in the pathogenesis of many infectious and noninfectious inflammatory diseases. To reduce IL-1 toxicity, extracellular domains of the soluble (s) IL-1R are shed from cell membranes and prevent triggering of cell-bound receptors. We investigated to what extent murine sIL-1RI can neutralize the IL-1 produced by LPS-stimulated macrophages. When mouse peritoneal macrophages were incubated with LPS, addition of sIL-1RI significantly inhibited the bioactivity of IL-1. Stimulation of cells with sIL-1RI alone induced no bioactive IL-1. When immunoreactive cytokine concentrations were measured with specific radioimmunoassays, sIL-1RI alone appeared to induce a significant release of IL-1 alpha in a concentration-dependent manner. This effect was independent of new protein synthesis. The production of IL-1 beta or TNF-alpha was not influenced by sIL-1RI. There was no interference of sIL-1RI with the IL-1 alpha radioimmunoassay. In mice, an i.v. injection of sIL-RI alone induced a rapid release of IL-1 alpha, but not of TNF-alpha or IL-1 beta. Treatment of mice with sIL-1RI improved the survival during a lethal infection with Candida albicans. In conclusion, sIL-1RI induces a rapid release of IL-1 alpha from cells, as well as into the systemic circulation. Although this IL-1 alpha may be inactivated in circulation by the same sIL-1RI, this phenomenon probably has immunostimulatory effects at local levels where the sIL-1RI-induced IL-1 alpha acts in a paracrine or autocrine manner.  相似文献   

6.
Yan YJ  Li Y  Lou B  Wu MP 《Life sciences》2006,79(2):210-215
High density lipoprotein (HDL) binds lipopolysaccharide (LPS) and neutralizes its toxicity. The aim of our study was to investigate the effects of Apolipoprotein (ApoA-I), the major apolipoprotein of HDL, on LPS-induced acute lung injury (ALI) and endotoxemia. BALB/c mice were challenged with LPS, followed by ApoA-I or saline administration for 24h. The mice were then sacrificed and histopathological analysis of the lung was performed. We found that ApoA-I could attenuate LPS-induced acute lung injury and inflammation. To investigate the mechanisms, we measured tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) levels in the serum and bronchoalveolar lavage (BAL) fluid and found that ApoA-I could significantly inhibit LPS-induced increases in the IL-1beta and TNF-alpha levels in serum (P<0.05, respectively), as well as in the IL-1beta, TNF-alpha, and IL-6 levels in BAL fluid (P<0.01 and P<0.05, P<0.05, respectively). Moreover, we evaluated the effect of ApoA-I on the mortality of L-929 cells which were attacked by LPS-activated peritoneal macrophages. We found that ApoA-I could significantly inhibit the LPS-induced cell death in a dose-dependent fashion. Furthermore, we investigated in vivo the effects of ApoA-I on the mortality rate and survival time after LPS administration and found that ApoA-I significantly decreased the mortality (P<0.05) and increased the survival time (P<0.05). In summary, the results suggest that ApoA-I could effectively protect against LPS-induced endotoxemia and acute lung damage. The mechanism might be related to inhibition of inflammatory cytokine release from macrophages.  相似文献   

7.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

8.
Current evidence indicates that endogenously produced peptide cytokines, most notably TNF-alpha and IL-1, mediate the lethality of experimental endotoxemia. Because circulating serum levels of IFN-gamma can be detected soon after TNF-alpha and IL-1 in response to endotoxin, we investigated the role of IFN-gamma in endotoxin and TNF-alpha lethality. Specific neutralizing antibodies to murine TNF-alpha (anti-TNF-alpha Ab) or murine IFN gamma (anti-IFN-gamma Ab) produced in our laboratory protected mice against the lethality of Escherichia coli endotoxin (LPS) administered 6 h later. Serum IFN-gamma levels 2 h after i.v. LPS were lower in mice treated with anti-TNF-alpha Ab compared to mice that received nonimmune IgG (median less than 2.5 vs 3.0 U/ml, P2 less than 0.05). In contrast, serum TNF-alpha levels 1 h after i.v. LPS peaked more than fourfold higher in mice treated with anti-IFN-gamma Ab compared to controls (median greater than 6400 vs 1405 pg/ml, p2 less than 0.05). Doses of TNF-alpha (300 micrograms/kg) and IFN-gamma (50,000 U) which were well tolerated when given individually were synergistically lethal in combination (0% lethality vs 100% lethality, P2 less than 0.001), and were associated with higher serum levels of IL-6 than with either cytokine alone. Anti-IFN-gamma Ab provided complete protection against exogenous human rTNF-alpha at the LD100 dose (1400 micrograms/kg, p2 less than 0.001), and in fact prevented lethality at doses four- to fivefold greater than the LD100 human rTNF-alpha (up to 6000 micrograms/kg). We conclude that IFN-gamma is synergistic with TNF-alpha, is essential for the lethality of LPS and TNF-alpha, and may have modulating effects on the negative control of serum levels of TNF-alpha after LPS in mice.  相似文献   

9.
10.
Lipopolysaccharide is a pathogen that causes inflammatory bone loss. Monocytes and macrophages produce proinflammatory cytokines such as IL-1, TNF-alpha, and IL-6 in response to LPS. We examined the effects of LPS on the function of osteoclasts formed in vitro in comparison with its effect on bone marrow macrophages, osteoclast precursors. Both osteoclasts and bone marrow macrophages expressed mRNA of Toll-like receptor 4 (TLR4) and CD14, components of the LPS receptor system. LPS induced rapid degradation of I-kappaB in osteoclasts, and stimulated the survival of osteoclasts. LPS failed to support the survival of osteoclasts derived from C3H/HeJ mice, which possess a missense mutation in the TLR4 gene. The LPS-promoted survival of osteoclasts was not mediated by any of the cytokines known to prolong the survival of osteoclasts, such as IL-1beta, TNF-alpha, and receptor activator of NF-kappaB ligand. LPS stimulated the production of proinflammatory cytokines such as IL-1beta, TNF-alpha, and IL-6 in bone marrow macrophages and peritoneal macrophages, but not in osteoclasts. These results indicate that osteoclasts respond to LPS through TLR4, but the characteristics of osteoclasts are quite different from those of their precursors, macrophages, in terms of proinflammatory cytokine production in response to LPS.  相似文献   

11.
Parasite survival and host health may depend on the ability of the parasite to modulate the host immune response by the release of immunomodulatory molecules. Excretory-secretory (ES)-62, one such well-defined molecule, is a major secreted protein of the rodent filarial nematode Acanthocheilonema viteae, and has homologues in human filarial nematodes. Previously we have shown that ES-62 is exclusively associated with a Th2 Ab response in mice. Here we provide a rationale for this polarized immune response by showing that the parasite molecule suppresses the IFN-gamma/LPS-induced production, by macrophages, of bioactive IL-12 (p70), a key cytokine in the development of Th1 responses. This suppression of the induction of a component of the host immune response extends to the production of the proinflammatory cytokines IL-6 and TNF-alpha, but not NO. The molecular mechanism underlying these findings awaits elucidation but, intriguingly, the initial response of macrophages to ES-62 is to demonstrate a low and transient release of these cytokines before becoming refractory to further release induced by IFN-gamma/LPS. The relevance of our observations is underscored by the finding that macrophages recovered from mice exposed to "physiological" levels of ES-62 by the novel approach of continuous release from implanted osmotic pumps in vivo were similarly refractory to release of IL-12, TNF-alpha, IL-6, but not NO, ex vivo. Therefore, our results suggest that exposure to ES-62 renders macrophages subsequently unable to produce Th1/proinflammatory cytokines. This likely contributes to the generation of immune responses with an anti-inflammatory Th2 phenotype, a well-documented feature of filarial nematode infection.  相似文献   

12.
The lung collectin surfactant protein A (SP-A) has both anti-inflammatory and prophagocytic activities. We and others previously showed that SP-A inhibits the macrophage production of tumor necrosis factor (TNF)-alpha stimulated by the gram-negative bacterial component LPS. We propose that SP-A decreases the production of proinflammatory cytokines by alveolar macrophages via a CD14-independent mechanism. SP-A inhibited LPS-simulated TNF-alpha production in rat and mouse macrophages in the presence and absence of serum (72% and 42% inhibition, respectively). In addition, SP-A inhibited LPS-induced mRNA levels for TNF-alpha, IL-1 alpha, and IL-1 beta as well as NF-kappa B DNA binding activity. SP-A also diminished ultrapure LPS-stimulated TNF-alpha produced by wild-type and CD14-null mouse alveolar macrophages by 58% and 88%, respectively. Additionally, SP-A inhibited TNF-alpha stimulated by PMA in both wild-type and TLR4-mutant macrophages. These data suggest that SP-A inhibits inflammatory cytokine production in a CD14-independent manner and also by mechanisms independent of the LPS signaling pathway.  相似文献   

13.
In unprimed mice, a single injection of a non-lethal dose of lipopolysaccharide (LPS) produced a rise in tumor necrosis factor (TNF) and interleukin 6 (IL 6) activities. Peak serum concentrations were attained, respectively, 1.5 hr and 2.5 hr after the challenge. Pretreatment with recombinant human TNF-alpha (rHuTNF) had a priming effect for enhanced production of both serum cytokines without any change in kinetics. The enhancement was more pronounced in the TNF (15-fold) than in the IL 6 (4-fold) response. Recombinant murine TNF caused a comparable increase in LPS-induced cytokine release. In contrast, comparable pretreatment with another macrophage-derived cytokine, recombinant human interleukin 1 beta (HuIL1-beta), revealed a negative effect on LPS-induced TNF release whereas IL 6 in the blood reached levels similar to those found after priming with rTNF. Moreover, when administered in combination with rHuTNF, rHuIL1-beta inhibited the priming effect on TNF autocrine production.  相似文献   

14.
Monocytes and macrophages can produce a large repertoire of cytokines and participate in the pathogenesis of granulomatous diseases. We investigated the production of pro- and anti-inflammatory cytokines by monocytes from patients with active paracoccidioidomycosis. Peripheral blood monocytes from 37 patients and 29 healthy controls were cultivated with or without 10 microg/ml of lipopolysaccharide (LPS) for 18 h at 37 degrees C, and the cytokine levels were determined in the culture supernatants by enzyme immunoassay. The results showed that the endogenous levels of tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6, IL-8, IL-10 and transforming growth factor beta detected in the supernatant of patient monocytes cultivated without stimulus were significantly higher than those produced by healthy controls. These data demonstrated that monocytes from patients with active paracoccidioidomycosis produce high levels of cytokines with both inflammatory and anti-inflammatory activities. However, patient monocytes produced significantly lower TNF-alpha and IL-6 levels in response to LPS when compared to normal subjects, suggesting an impairment in their capacity to produce these cytokines after LPS stimulation. Concentrations of IL-1beta, IL-8 and IL-10 in cultures stimulated with LPS were higher in patients than in controls. These results suggest that an imbalance in the production of pro- and anti-inflammatory cytokines might be associated with the pathogenesis of paracoccidioidomycosis.  相似文献   

15.
Influence of immunomodulator of bacterial origin - purified staphylococcal toxoid (PST) - on the synthesisof proinlammatory (IL-1beta, IL-6, TNFalpha, IFN-gamma) and anti-inflammatory (IL- 10) cytokines, as well as cytokines directing the immune response to Th1 (IL-12) or Th2 (IL-4) type was studied in mice. Serum cytokines levels as well as levels of cytokines produced by splenocytes spontaneously or after stimulation by phytohemagglutinin were measured 4 and 24 hours after inoculation of PST. It was shown that PST in wide spectrum of doses (15; 1.5; 0.15 BU per mouse) was able to enhance or suppress synthesis of cytokines. Effect was nonlinear and its direction was depended from cytokine, time interval passed before obtaining the sample and dose of PST. For example, 15 BU of PST enhanced whereas 0.15 BU of PST suppressed the IL-6 production 4 hours after inoculation. Decrease of IL-6 level in serum 24 hours after inoculation of PST was detected. Synthesis of several serum interleukins (IL-2, IL-10) did not changed 4 and 24 hours after inoculation irrespective from dose of PST. It was demonstrated that modulation of humoral immune response in vivo induced by PST did not associated with modulation of cytokine profile. For example, increase of number of cells secreting antibodies to sheep erythrocytes was registered both during increased synthesis of cytokines (4 hours, IL-1beta, IL-6, IL-12) and during period of its depression (IL-6, TNF-alpha, IFN-gamma), as well as during stable production of cytokines (IL-1beta, IL-6, IFN-gamma).  相似文献   

16.
17.
This study was designed to examine the influence of a macrolide antibiotic, roxithromycin (RXM), on the production of pro-inflammatory cytokines, interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha. In the first experiments, we examined the effect of RXM on in vitro cytokine production from lipopolysaccharide (LPS)-stimulated human peripheral blood monocytes. The monocytes were cultured in the presence of various doses of the agent. After 24 h, the culture supernatants were obtained and assayed for IL-1beta and TNF-alpha contents by enzyme-linked immunosorbent assay. RXM suppressed the in vitro production of IL-1beta and TNF-alpha in response to LPS stimulation. This was dose dependent and first noted at a concentration of as little as 0.05 microg/ml, which is much lower than therapeutic blood levels. In the second part of the experiments, we examined the influence of RXM on the appearance of IL-1beta and TNF-alpha in mouse lung extract induced by LPS inhalation. RXM was administered orally into BALB/c mice at a single dose of 2.5 mg/kg once a day for 5-12 weeks. These mice were then instilled with LPS into the trachea and examined for the presence of cytokines in aqueous lung extracts. Pretreatment of mice with RXM for 5 weeks did not influence of the appearance of both IL-1beta and TNF-alpha in aqueous lung extracts. However, pretreatment for more than 7 weeks dramatically suppressed the cytokine appearance in the extracts.  相似文献   

18.
BACKGROUND: Tumor necrosis factor alpha (TNF-alpha) is often considered the main proinflammatory cytokine induced by lipopolysaccharide (LPS) and consequently the critical mediator of the lethality associated with septic shock. MATERIALS AND METHODS: We used mice carrying a deletion of both the lymphotoxin alpha (LT-alpha) and TNF-alpha genes to assess the role of TNF in the cytokine cascade and lethality induced by LPS. RESULTS: Initial production of IL-1 alpha, IL-1 beta, IL-6, and IL-10 is comparable in wild-type and mutant mice. However, at later times, expression of IL-1 alpha, IL-1 beta, and IL-10 is prolonged, whereas that of IL-6 decreases in mutant mice. Expression of IFN-gamma is almost completely abrogated in mutants, which is in agreement with a more significant alteration of the late phase of the cytokine cascade. We measured similar LD50 (600 micrograms) for the intravenous injection of LPS in mice of the three genotypes (+/+, +/-, -/-), demonstrating that the absence of TNF does not confer long-term protection from lethality. However, death occurred much more slowly in mutant mice, who were protected more efficiently from death by CNI 1493, an inhibitor of proinflammatory cytokine production, than were wild-type mice. DISCUSSION: Thus, while TNF-alpha is not required for the induction of these cytokines by LPS, it modulates the kinetics of their expression. The lethality studies simultaneously confirm a role for TNF as a mediator of early lethality and establish that, in the absence of these cytokines, other mediators take over, resulting in the absence of long-term protection from LPS toxicity.  相似文献   

19.
Cytokines are proteins that mediate communication between cells of the immune system as well as certain other non-immune host cells. These proteins are produced by many cell types and they mediate immune and inflammatory responses. However, the direct site analysis of these critical proteins is hampered by the lack of site-specific tools available for such direct measurements. In this study, both in vitro and in vivo microdialysis sampling of different cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], interleukin-6 [IL-6], IL-12p70, and macrophage chemoattractant protein-1 [MCP-1]) was performed. A mouse model of bacterial lipopolysaccharide (LPS) administration and response pattern was used for in vivo studies. Three cytokines, TNF-alpha, IL-6, and MCP-1 were quantified in the serum from mice given LPS. In vivo studies demonstrated the ability to monitor increasing levels of these cytokines (TNF-alpha, IL-6, and MCP-1) via microdialysis probes placed in the peritoneal cavity of mice given LPS. All three cytokines were quantified simultaneously in 15 muL of dialysate using a multiplexed bead-based immunoassay for flow cytometry. The detected dialysate cytokine concentrations varied between 200 pg/mL and 1500 pg/mL for TNF-alpha, between 600 pg/mL and 3000 pg/mL for MCP-1, and between 2700 pg/mL and more than 5000 pg/mL for IL-6. The detected serum cytokine concentrations ranged from 5700 pg/mL to 35,000 pg/mL for TNF-alpha, from 40,000 pg/mL to 65,000 pg/mL for MCP-1, and greater than than 100,000 pg/mL for IL-6. This work demonstrates that microdialysis sampling can be used in vivo to collect temporal profiles of cytokine production.  相似文献   

20.
Increased plasma- and tissue levels of endothelin-1 (ET-1) during inflammatory diseases, have suggested a role of ET-1 in the pathophysiology of inflammatory reactions. The authors have studied the effect of ET-1 on cytokine release from monocytes and monocyte-derived macrophages. ET-1 increased secretion of TNF-alpha, IL-1beta and IL-6 in a dose- and time-dependent manner. Optimal ET-1 concentration ranged from 0.01 to 1 nM. The maximal response was a 200 to 400% increase in cytokine release. A time-course study revealed that the pattern of cytokines induced by ET-1 was different in monocytes and macrophages, although an early increase in TNF-alpha was observed in both monocyte and macrophage supernatants. In conclusion, ET-1 stimulates monocytes and macrophages to release cytokines thereby demonstrating a potential role for ET-1 in regulation of inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号