首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374596篇
  免费   40067篇
  国内免费   379篇
  2018年   3060篇
  2016年   4128篇
  2015年   5638篇
  2014年   6552篇
  2013年   9546篇
  2012年   10469篇
  2011年   10641篇
  2010年   7097篇
  2009年   6613篇
  2008年   9486篇
  2007年   9591篇
  2006年   9204篇
  2005年   8827篇
  2004年   8629篇
  2003年   8460篇
  2002年   8225篇
  2001年   20145篇
  2000年   20161篇
  1999年   15611篇
  1998年   4679篇
  1997年   5054篇
  1996年   4762篇
  1995年   4376篇
  1994年   4256篇
  1993年   4232篇
  1992年   12132篇
  1991年   11880篇
  1990年   11078篇
  1989年   11011篇
  1988年   10093篇
  1987年   9361篇
  1986年   8513篇
  1985年   8609篇
  1984年   6943篇
  1983年   5939篇
  1982年   4501篇
  1981年   4047篇
  1980年   3792篇
  1979年   6576篇
  1978年   5079篇
  1977年   4826篇
  1976年   4396篇
  1975年   4845篇
  1974年   5232篇
  1973年   5173篇
  1972年   4617篇
  1971年   4311篇
  1970年   3838篇
  1969年   3682篇
  1968年   3385篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
There is a diverse range of microbiological challenges facing the food, healthcare and clinical sectors. The increasing and pervasive resistance to broad‐spectrum antibiotics and health‐related concerns with many biocidal agents drives research for novel and complementary antimicrobial approaches. Biofilms display increased mechanical and antimicrobial stability and are the subject of extensive research. Cold plasmas (CP) have rapidly evolved as a technology for microbial decontamination, wound healing and cancer treatment, owing to the chemical and bio‐active radicals generated known collectively as reactive oxygen and nitrogen species. This review outlines the basics of CP technology and discusses the interactions with a range of microbiological targets. Advances in mechanistic insights are presented and applications to food and clinical issues are discussed. The possibility of tailoring CP to control specific microbiological challenges is apparent. This review focuses on microbiological issues in relation to food‐ and healthcare‐associated human infections, the role of CP in their elimination and the current status of plasma mechanisms of action.  相似文献   
3.
Podosphaera leucotricha is the causal agent of powdery mildew (PM) in apple. To reduce the amount of fungicides required to control this pathogen, the development of resistant apple cultivars should become a priority. Resistance to PM was achieved in various crops by knocking out specific members of the MLO gene family that are responsible for PM susceptibility (S-genes). In apple, the knockdown of MdMLO19 resulted in PM resistance. However, since gene silencing technologies such as RNAi are perceived unfavorably in Europe, a different approach that exploits this type of resistance is needed. This work evaluates the presence of non-functional naturally occurring alleles of MdMLO19 in apple germplasm. The screening of the re-sequencing data of 63 apple individuals led to the identification of 627 single nucleotide polymorphisms (SNPs) in five MLO genes (MdMLO5, MdMLO7, MdMLO11, MdMLO18, and MdMLO19), 127 of which were located in exons. The T-1201 insertion of a single nucleotide in MdMLO19 caused the formation of an early stop codon, resulting in a truncated protein lacking 185 amino acids, including the calmodulin-binding domain. The presence of the insertion was evaluated in 115 individuals. It was heterozygous in 64 and homozygous in 25. Twelve of the 25 individuals carrying the insertion in homozygosity were susceptible to PM. After barley, pea, cucumber, and tomato, apple would be the fifth species for which a natural non-functional mlo allele has been found.  相似文献   
4.
Crop improvement is a long-term, expensive institutional endeavor. Genomic selection (GS), which uses single nucleotide polymorphism (SNP) information to estimate genomic breeding values, has proven efficient to increasing genetic gain by accelerating the breeding process in animal breeding programs. As for crop improvement, with few exceptions, GS applicability remains in the evaluation of algorithm performance. In this study, we examined factors related to GS applicability in line development stage for grain yield using a hard red winter wheat (Triticum aestivum L.) doubled-haploid population. The performance of GS was evaluated in two consecutive years to predict grain yield. In general, the semi-parametric reproducing kernel Hilbert space prediction algorithm outperformed parametric genomic best linear unbiased prediction. For both parametric and semi-parametric algorithms, an upward bias in predictability was apparent in within-year cross-validation, suggesting the prerequisite of cross-year validation for a more reliable prediction. Adjusting the training population’s phenotype for genotype by environment effect had a positive impact on GS model’s predictive ability. Possibly due to marker redundancy, a selected subset of SNPs at an absolute pairwise correlation coefficient threshold value of 0.4 produced comparable results and reduced the computational burden of considering the full SNP set. Finally, in the context of an ongoing breeding and selection effort, the present study has provided a measure of confidence based on the deviation of line selection from GS results, supporting the implementation of GS in wheat variety development.  相似文献   
5.
6.
Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-13C]PA and [13-13C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-13C]PA/[1-13C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood.  相似文献   
7.
  • Studies on plant electrophysiology are mostly focused on specific traits of single cells. Inspired by the complexity of the signalling network in plants, and by analogy with neurons in human brains, we sought evidence of high complexity in the electrical dynamics of plant signalling and a likely relationship with environmental cues.
  • An EEG‐like standard protocol was adopted for high‐resolution measurements of the electrical signal in Glycine max seedlings. The signals were continuously recorded in the same plants before and after osmotic stimuli with a ?2 MPa mannitol solution. Non‐linear time series analyses methods were used as follows: auto‐correlation and cross‐correlation function, power spectra density function, and complexity of the time series estimated as Approximate Entropy (ApEn).
  • Using Approximate Entropy analysis we found that the level of temporal complexity of the electrical signals was affected by the environmental conditions, decreasing when the plant was subjected to a low osmotic potential. Electrical spikes observed only after stimuli followed a power law distribution, which is indicative of scale invariance.
  • Our results suggest that changes in complexity of the electrical signals could be associated with water stress conditions in plants. We hypothesised that the power law distribution of the spikes could be explained by a self‐organised critical state (SOC) after osmotic stress.
  相似文献   
8.
The application of Gas Chromatography (GC)–Atmospheric Pressure Chemical Ionization (APCI)–Time-of-Flight Mass Spectrometry (TOF-MS) is presented for sterol analysis in human plasma. A commercial APCI interface was modified to ensure a well-defined humidity which is essential for controlled ionization. In the first step, optimization regarding flow rates of auxiliary gases was performed by using a mixture of model analytes. Secondly, the qualitative and quantitative analysis of sterols including oxysterols, cholesterol precursors, and plant sterols as trimethylsilyl-derivatives was successfully carried out. The characteristics of APCI together with the very good mass accuracy of TOF-MS data enable the reliable identification of relevant sterols in complex matrices. Linear calibration lines and plausible results for healthy volunteers and patients could be obtained whereas all mass signals were extracted with an extraction width of 20 ppm from the full mass data set. One advantage of high mass accuracy can be seen in the fact that from one recorded run any search for m/z can be performed.  相似文献   
9.
Here we explored the impact of hydrogen sulfide (H2S) on biophysical properties of the primary human airway smooth muscle (ASM)–the end effector of acute airway narrowing in asthma. Using magnetic twisting cytometry (MTC), we measured dynamic changes in the stiffness of isolated ASM, at the single-cell level, in response to varying doses of GYY4137 (1–10 mM). GYY4137 slowly released appreciable levels of H2S in the range of 10–275 μM, and H2S released was long lived. In isolated human ASM cells, GYY4137 acutely decreased stiffness (i.e. an indicator of the single-cell relaxation) in a dose-dependent fashion, and stiffness decreases were sustained in culture for 24 h. Human ASM cells showed protein expressions of cystathionine-γ-lyase (CSE; a H2S synthesizing enzyme) and ATP-sensitive potassium (KATP) channels. The KATP channel opener pinacidil effectively relaxed isolated ASM cells. In addition, pinacidil-induced ASM relaxation was completely inhibited by the treatment of cells with the KATP channel blocker glibenclamide. Glibenclamide also markedly attenuated GYY4137-mediated relaxation of isolated human ASM cells. Taken together, our findings demonstrate that H2S causes the relaxation of human ASM and implicate as well the role for sarcolemmal KATP channels. Finally, given that ASM cells express intrinsic enzymatic machinery of generating H2S, we suggest thereby this class of gasotransmitter can be further exploited for potential therapy against obstructive lung disease.  相似文献   
10.
In the present work we studied the effect of antioxidants of the SkQ1 family (10-(6′-plastoquinonyl)decyltriphenylphosphonium) on the oxidative hemolysis of erythrocytes induced by a lipophilic free radical initiator 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN) and a water-soluble free radical initiator 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). SkQ1 was found to protect erythrocytes from hemolysis, 2 μM being the optimal concentration. Both the oxidized and reduced SkQ1 forms exhibited protective properties. Both forms of SkQ1 also inhibited lipid peroxidation in erythrocytes induced by the lipophilic free radical initiator AMVN as detected by accumulation of malondialdehyde. However, in the case of induction of erythrocyte oxidation by AAPH, the accumulation of malondialdehyde was not inhibited by SkQ1. In the case of AAPH-induced hemolysis, the rhodamine-containing analog SkQR1 exerted a comparable protective effect at the concentration of 0.2 μM. At higher SkQ1 and SkQR1 concentrations, the protective effect was smaller, which was attributed to the ability of these compounds to facilitate hemolysis in the absence of oxidative stress. We found that plastoquinone in the oxidized form of SkQ1 could be reduced by erythrocytes, which apparently accounted for its protective action. Thus, the protective effect of SkQ in erythrocytes, which lack mitochondria, proceeded at concentrations that are two to three orders of magnitude higher than those that were active in isolated mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号